ﻻ يوجد ملخص باللغة العربية
A benchmark is set on the three-nucleon photodisintegration calculating the total cross section with modern realistic two- and three-nucleon forces (AV18, UrbIX) using both the Faddeev equations and the Lorentz Integral Transform method. This test shows that the precision of three-body calculations involving continuum states is considerably higher than experimental uncertainties. Effects due to retardations, higher multipoles, meson exchange currents and Coulomb force are studied.
In the past, several efficient methods have been developed to solve the Schroedinger equation for four-nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis variational, the stochastic var
Quark-model nucleon-nucleon and hyperon-nucleon interactions by the Kyoto- Niigata group are applied to the hypertriton calculation in a new three-cluster Faddeev formalism using the two-cluster resonating-group method kernels. The most recent model,
p-3H and n-3He scattering in the energy range above the n-3He but below the d-d thresholds is studied by solving the 4-nucleon problem with a realistic nucleon-nucleon interaction. Three different methods -- Alt, Grassberger and Sandhas, Hyperspheric
Recently a formalism for a direct treatment of the Faddeev equation for the three-nucleon bound state in three dimensions has been proposed. It relies on an operator representation of the Faddeev component in the momentum space and leads to a finite
We report quantum Monte Carlo calculations of single-$Lambda$ hypernuclei for $A<50$ based on phenomenological two- and three-body hyperon-nucleon forces. We present results for the $Lambda$ separation energy in different hyperon orbits, showing that