ﻻ يوجد ملخص باللغة العربية
The production of $K^+$ mesons in proton-nucleus collisions from 1.0 to 2.5 GeV is analyzed with respect to one-step nucleon-nucleon $(NNto N Y K^+$) and two-step $Delta$-nucleon $(Delta N to K^+ Y N$) or pion-nucleon $(pi N to K^+ Y $) production channels on the basis of a coupled-channel transport approach (CBUU) including the kaon final state interactions. The influence of momentum-dependent potentials for the nucleon, hyperon and kaon in the final state are studied as well as the importance of $K^+$ elastic rescattering in the target nucleus. The transport calculations are compared to the experimental $K^+$ spectra taken at LBL Berkeley, SATURNE, CELSIUS, GSI and COSY-Julich. It is found that the momentum-dependent baryon potentials effect the excitation function of the $K^+$ cross section; at low bombarding energies of $sim $ 1.0 GeV the attractive baryon potentials in the final state lead to a relative enhancement of the kaon yield whereas the net repulsive potential at bombarding energies $sim$ 2 GeV causes a decrease of the $K^+$ cross section. Furthermore it is pointed out, that especially the $K^+$ spectra at low momenta (or kinetic energy $T_K$) allow to determine the in-medium $K^+$ potential almost model independently due to a relative shift of the $K^+$ spectra in kinetic energy that arises from the acceleration of the kaons when propagating out of the nuclear medium to free space, i.e. converting potential energy to kinetic energy of the free kaon.
The production of $K^+$ mesons in proton-nucleus collisions from 1.0 to 2.3 GeV is analyzed with respect to one-step nucleon-nucleon $(NNto N Y K^+$) and two-step $Delta$-nucleon $(Delta N to K^+ Y N$) or pion-nucleon $(pi N to K^+ Y $) production ch
A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model.
The production of K^+ mesons in pA (A = D, C, Cu, Ag, Au) collisions has been investigated at the COoler SYnchrotron COSY-Julich for beam energies T_p = 1.0 - 2.3 GeV. Double differential inclusive pC cross sections at forward angles theta < 12 degre
Recently, a new approach for solving the three-body problem for (d,p) reactions in the Coulomb-distorted basis in momentum space was proposed. Important input quantities for such calculations are the scattering matrix elements for proton- and neutron
To explain the experimental facts that the fusion cross sections of proton-halo nucleus on heavy target nucleus is not enhanced as expected, the shielding supposition has been proposed. Namely, the proton-halo nucleus is polarized with the valence pr