ﻻ يوجد ملخص باللغة العربية
A brief review is given concerning the status of the theoretical work on nucleon spectral functions. A recent concern about the validity of the concept of spectroscopic factors as deduced from (e,ep) reactions at higher Q^2, is discussed in some detail. The consequences of the observed spectral strength are then considered in the context of nuclear saturation. It is argued that short-range correlations are mainly responsible for the actual value of the observed charge density in 208Pb and by extension for the empirical value of the saturation density of nuclear matter. This observation combined with the general understanding of the spectroscopic strength suggests that a renewed study of nuclear matter, emphasizing the self-consistent determination of the spectral strength due to short-range and tensor correlations, may shed light on the perennial nuclear saturation problem. First results using such a scheme are presented.
Recent developments in understanding the influence of the nucleus on deep-inelastic structure functions, the EMC effect, are reviewed. A new data base which expresses ratios of structure functions in terms of the Bjorken variable $x_A=AQ^2/(2M_A q_0)
A brief overview is given of the properties of spectral functions in finite nuclei as obtained from (e,ep) experiments. Based on recent experimental data from this reaction it is argued that the empirical value of the saturation density of nuclear ma
The short-range and tensor correlations associated to realistic nucleon-nucleon interactions induce a population of high-momentum components in the many-body nuclear wave function. We study the impact of such high-momentum components on bulk observab
We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the Color Glass Condensate (CGC) picture. We find that the angular momentum s
The short-range correlation (SRC) induced by the tensor force in the isosinglet neutron-proton interaction channel leads to a high-momentum tail (HMT) in the single-nucleon momentum distributions n(k) in nuclei. Owing to the remaining uncertainties a