ﻻ يوجد ملخص باللغة العربية
We identify the major physics milestones in the development of strange hadrons as an observable for both the formation of quark-gluon plasma, and of the ensuing explosive disintegration of deconfined matter fireball formed in relativistic heavy ion collisions at 160--20A GeV. We describe the physical properties of QGP phase and show agreement with the expectations based on an analysis of hadron abundances. We than also demonstrate that the m_t shape of hadron spectra is in qualitative agreement with the sudden breakup of a supercooled QGP fireball.
A Comparative study of the strengths and weakness of the models of fireball formation namely the statistical model of Ramanathan et.al (Physical Review C 70, 027903, 2004) and the approximation schemes of Kapusta et. al (Physical Review D 46, 1379, 1
We construct the density of states for quarks and gluons using the `Thomas - Fermi model for atoms and the `Bethe model for nucleons as templates. With parameters to take care of the plasma (hydrodynamical) features of the QGP with a thermal potentia
We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. ph
A review of earlier fluid dynamical calculations with QGP show a softening of the directed flow while with hadronic matter this effect is absent. The effect shows up in the reaction plane as enhanced emission which is orthogonal to the directed flow.
I review recent developments in the phenomenological study of the quark-gluon plasma (QGP) transport properties based on a personal selection of results that were presented at Quark Matter 2019. The constraints on the temperature dependence of QGP sh