Zero tension Kardar-Parisi-Zhang equation in (d+1)- Dimensions


الملخص بالإنكليزية

The joint probability distribution function (PDF) of the height and its gradients is derived for a zero tension $d+1$-dimensional Kardar-Parisi-Zhang (KPZ) equation. It is proved that the height`s PDF of zero tension KPZ equation shows lack of positivity after a finite time $t_{c}$. The properties of zero tension KPZ equation and its differences with the case that it possess an infinitesimal surface tension is discussed. Also potential relation between the time scale $t_{c}$ and the singularity time scale $t_{c, u to 0}$ of the KPZ equation with an infinitesimal surface tension is investigated.

تحميل البحث