The Obstacle Problem for Functions of Least Gradient


الملخص بالإنكليزية

For a given domain $Omega subset Bbb{R}^n$, we consider the variational problem of minimizing the $L^1$-norm of the gradient on $Omega$ of a function $u$ with prescribed continuous boundary values and satisfying a continuous lower obstacle condition $uge Psi$ inside $Omega$. Under the assumption of strictly positive mean curvature of the boundary $partialOmega$, we show existence of a continuous solution, with Holder exponent half of that of data and obstacle. This generalizes previous results obtained for the unconstrained and double-obstacle problems. The main new feature in the present analysis is the need to extend various maximum principles from the case of two area-minimizing sets to the case of one sub- and one superminimizing set. This we accomplish subject to a weak regularity assumption on one of the sets, sufficient to carry out the analysis. Interesting open questions include the uniqueness of solutions and a complete analysis of the regularity properties of area superminimizing sets. We provide some preliminary results in the latter direction, namely a new monotonicity principle for superminimizing sets, and the existence of ``foamy superminimizers in two dimensions.

تحميل البحث