ترغب بنشر مسار تعليمي؟ اضغط هنا

Descriptive set theory and forcing; How to prove theorems about Borel sets the hard way

133   0   0.0 ( 0 )
 نشر من قبل Arnold Miller
 تاريخ النشر 1994
  مجال البحث
والبحث باللغة English
 تأليف Arnold Miller




اسأل ChatGPT حول البحث

These are lecture notes from a course I gave at the University of Wisconsin during the Spring semester of 1993. Part 1 is concerned with Borel hierarchies. Section 13 contains an unpublished theorem of Fremlin concerning Borel hierarchies and MA. Section 14 and 15 contain new results concerning the lengths of Borel hierarchies in the Cohen and random real model. Part 2 contains standard results on the theory of Analytic sets. Section 25 contains Harringtons Theorem that it is consistent to have $Pi^1_2$ sets of arbitrary cardinality. Part 3 has the usual separation theorems. Part 4 gives some applications of Gandy forcing. We reverse the usual trend and use forcing arguments instead of Baire category. In particular, Louveaus Theorem on $Pi^0_alpha$ hyp-sets has a simpler proof using forcing.



قيم البحث

اقرأ أيضاً

98 - Mathieu Hoyrup 2017
Descriptive set theory was originally developed on Polish spaces. It was later extended to $omega$-continuous domains [Selivanov 2004] and recently to quasi-Polish spaces [de Brecht 2013]. All these spaces are countably-based. Extending descriptive s et theory and its effective counterpart to general represented spaces, including non-countably-based spaces has been started in [Pauly, de Brecht 2015]. We study the spaces $mathcal{O}(mathbb{N}^mathbb{N})$, $mathcal{C}(mathbb{N}^mathbb{N},2)$ and the Kleene-Kreisel spaces $mathbb{N}langlealpharangle$. We show that there is a $Sigma^0_2$-subset of $mathcal{O}(mathbb{N}^mathbb{N})$ which is not Borel. We show that the open subsets of $mathbb{N}^{mathbb{N}^mathbb{N}}$ cannot be continuously indexed by elements of $mathbb{N}^mathbb{N}$ or even $mathbb{N}^{mathbb{N}^mathbb{N}}$, and more generally that the open subsets of $mathbb{N}langlealpharangle$ cannot be continuously indexed by elements of $mathbb{N}langlealpharangle$. We also derive effecti
97 - Taras Banakh 2020
This is a short introductory course to Set Theory, based on axioms of von Neumann--Bernays--Godel (briefly NBG). The text can be used as a base for a lecture course in Foundations of Mathematics, and contains a reasonable minimum which a good (post-g raduate) student in Mathematics should know about foundations of this science.
A major challenge in applying machine learning to automated theorem proving is the scarcity of training data, which is a key ingredient in training successful deep learning models. To tackle this problem, we propose an approach that relies on trainin g with synthetic theorems, generated from a set of axioms. We show that such theorems can be used to train an automated prover and that the learned prover transfers successfully to human-generated theorems. We demonstrate that a prover trained exclusively on synthetic theorems can solve a substantial fraction of problems in TPTP, a benchmark dataset that is used to compare state-of-the-art heuristic provers. Our approach outperforms a model trained on human-generated problems in most axiom sets, thereby showing the promise of using synthetic data for this task.
259 - Olivier Finkel 2020
The $omega$-power of a finitary language L over a finite alphabet $Sigma$ is the language of infinite words over $Sigma$ defined by L $infty$ := {w 0 w 1. .. $in$ $Sigma$ $omega$ | $forall$i $in$ $omega$ w i $in$ L}. The $omega$-powers appear very na turally in Theoretical Computer Science in the characterization of several classes of languages of infinite words accepted by various kinds of automata, like B{u}chi automata or B{u}chi pushdown automata. We survey some recent results about the links relating Descriptive Set Theory and $omega$-powers.
The Doob convergence theorem implies that the set of divergence of any martingale has measure zero. We prove that, conversely, any $G_{deltasigma}$ subset of the Cantor space with Lebesgue-measure zero can be represented as the set of divergence of s ome martingale. In fact, this is effective and uniform. A consequence of this is that the set of everywhere converging martingales is ${bfPi}^1_1$-complete, in a uniform way. We derive from this some universal and complete sets for the whole projective hierarchy, via a general method. We provide some other complete sets for the classes ${bfPi}^1_1$ and ${bfSigma}^1_2$ in the theory of martingales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا