ﻻ يوجد ملخص باللغة العربية
In a market with transaction costs, the price of a derivative can be expressed in terms of (preconsistent) price systems (after Kusuoka (1995)). In this paper, we consider a market with binomial model for stock price and discuss how to generate the price systems. From this, the price formula of a derivative can be reformulated as a stochastic control problem. Then the dynamic programming approach can be used to calculate the price. We also discuss optimization of expected utility using price systems.
A risk-averse agent hedges her exposure to a non-tradable risk factor $U$ using a correlated traded asset $S$ and accounts for the impact of her trades on both factors. The effect of the agents trades on $U$ is referred to as cross-impact. By solving
This paper presents machine learning techniques and deep reinforcement learningbased algorithms for the efficient resolution of nonlinear partial differential equations and dynamic optimization problems arising in investment decisions and derivative
We consider a general path-dependent version of the hedging problem with price impact of Bouchard et al. (2019), in which a dual formulation for the super-hedging price is obtained by means of PDE arguments, in a Markovian setting and under strong re
We consider the Brownian market model and the problem of expected utility maximization of terminal wealth. We, specifically, examine the problem of maximizing the utility of terminal wealth under the presence of transaction costs of a fund/agent inve
We study functional inequalities (Poincare, Cheeger, log-Sobolev) for probability measures obtained as perturbations. Several explicit results for general measures as well as log-concave distributions are given.The initial goal of this work was to ob