ﻻ يوجد ملخص باللغة العربية
In this paper, we study a free boundary problem for compressible spherically symmetric Navier-Stokes equations without a solid core. Under certain assumptions imposed on the initial data, we obtain the global existence and uniqueness of the weak solution, give some uniform bounds (with respect to time) of the solution and show that it converges to a stationary one as time tends to infinity. Moreover, we obtain the stabilization rate estimates of exponential type in $L^infty$-norm and weighted $H^1$-norm of the solution by constructing some Lyapunov functionals. The results show that such system is stable under the small perturbations, and could be applied to the astrophysics.
In this note, by constructing suitable approximate solutions, we prove the existence of global weak solutions to the compressible Navier-Stokes equations with density-dependent viscosity coefficients in the whole space $mathbb{R}^N$, $Ngeq2$ (or exte
In this paper, we provide rigorous justification of the hydrostatic approximation and the derivation of primitive equations as the small aspect ratio limit of the incompressible three-dimensional Navier-Stokes equations in the anisotropic horizontal
We study the stationary nonhomogeneous Navier--Stokes problem in a two dimensional symmetric domain with a semi-infinite outlet (for instance, either parabo-loidal or channel-like). Under the symmetry assumptions on the domain, boundary value and ext
We prove that the energy equality holds for weak solutions of the 3D Navier-Stokes equations in the functional class $L^3([0,T);V^{5/6})$, where $V^{5/6}$ is the domain of the fractional power of the Stokes operator $A^{5/12}$.
It is known that the Maxwell-Klein-Gordon equations in $mathbb{R}^{3+1}$ admit global solutions with finite energy data. In this paper, we present a new approach to study the asymptotic behavior of these global solutions. We show the quantitative ene