ﻻ يوجد ملخص باللغة العربية
In this work we introduce a new combinatorial notion of boundary $Re C$ of an $omega$-dimensional cubing $C$. $Re C$ is defined to be the set of almost-equality classes of ultrafilters on the standard system of halfspaces of $C$, endowed with an order relation reflecting the interaction between the Tychonoff closures of the classes. When $C$ arises as the dual of a cubulation -- or discrete system of halfspaces -- $HH$ of a CAT(0) space $X$ (for example, the Niblo-Reeves cubulation of the Davis-Moussong complex of a finite rank Coxeter group), we show how $HH$ induces a function $rho:bd XtoRe C$. We develop a notion of uniformness for $HH$, generalizing the parallel walls property enjoyed by Coxeter groups, and show that, if the pair $(X,HH)$ admits a geometric action by a group $G$, then the fibers of $rho$ form a stratification of $bd X$ graded by the order structure of $Re C$. We also show how this structure computes the components of the Tits boundary of $X$. Finally, using our result from another paper, that the uniformness of a cubulation as above implies the local finiteness of $C$, we give a condition for the co-compactness of the action of $G$ on $C$ in terms of $rho$, generalizing a result of Williams, previously known only for Coxeter groups.
We study the general theory of asymptotically CAT(0) groups, explaining why such a group has finitely many conjugacy classes of finite subgroups, is $F_infty$ and has solvable word problem. We provide techniques to combine asymptotically CAT(0) group
We show that any split extension of a right-angled Coxeter group $W_{Gamma}$ by a generating automorphism of finite order acts faithfully and geometrically on a $mathrm{CAT}(0)$ metric space.
We discuss a problem posed by Gersten: Is every automatic group which does not contain Z+Z subgroup, hyperbolic? To study this question, we define the notion of n-tracks of length n, which is a structure like Z+Z, and prove its existence in the non-h
We study abstract group actions of locally compact Hausdorff groups on CAT(0) spaces. Under mild assumptions on the action we show that it is continuous or has a global fixed point. This mirrors results by Dudley and Morris-Nickolas for actions on tr
We generalize Bestvinas notion of a $mathcal{Z}$-boundary for a group to that of a coarse $mathcal{Z}$-boundary. We show that established theorems about $mathcal{Z}$-boundaries carry over nicely to the more general theory, and that some wished-for pr