ﻻ يوجد ملخص باللغة العربية
We apply some of the ideas of the Ph.D. Thesis of G. A. Margulis to Teichmuller space. Let x be a point in Teichmuller space, and let B_R(x) be the ball of radius R centered at x (with distances measured in the Teichmuller metric). We obtain asymptotic formulas as R tends to infinity for the volume of B_R(x), and also for for the cardinality of the intersection of B_R(x) with an orbit of the mapping class group.
In this article, we consider a closed rank one $C^infty$ Riemannian manifold $M$ of nonpositive curvature and its universal cover $X$. Let $b_t(x)$ be the Riemannian volume of the ball of radius $t>0$ around $xin X$, and $h$ the topological entropy o
We prove some ergodic-theoretic rigidity properties of the action of SL(2,R) on moduli space. In particular, we show that any ergodic measure invariant under the action of the upper triangular subgroup of SL(2,R) is supported on an invariant affine s
We prove results about orbit closures and equidistribution for the SL(2,R) action on the moduli space of compact Riemann surfaces, which are analogous to the theory of unipotent flows. The proofs of the main theorems rely on the measure classificatio
In this note we give asymptotic estimates for the volume growth associated to suitable infinite graphs. Our main application is to give an asymptotic estimate for volume growth associated to translation surfaces.
We compute the asymptotics, as R tends to infinity, of the number of closed geodesics in Moduli space of length at most R, or equivalently the number of pseudo-Anosov elements of the mapping class group of translation length at most R.