ترغب بنشر مسار تعليمي؟ اضغط هنا

Counting permutations by their runs up and down

160   0   0.0 ( 0 )
 نشر من قبل Rod Canfield
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We find a formula for the number of permutations of $[n]$ that have exactly $s$ runs up and down. The formula is at once terminating, asymptotic, and exact.



قيم البحث

اقرأ أيضاً

81 - P.-L. Giscard 2020
Let $G$ be an infinite, vertex-transitive lattice with degree $lambda$ and fix a vertex on it. Consider all cycles of length exactly $l$ from this vertex to itself on $G$. Erasing loops chronologically from these cycles, what is the fraction $F_p/lam bda^{ell(p)}$ of cycles of length $l$ whose last erased loop is some chosen self-avoiding polygon $p$ of length $ell(p)$, when $ltoinfty$ ? We use combinatorial sieves to prove an exact formula for $F_p/lambda^{ell(p)}$ that we evaluate explicitly. We further prove that for all self-avoiding polygons $p$, $F_pinmathbb{Q}[chi]$ with $chi$ an irrational number depending on the lattice, e.g. $chi=1/pi$ on the infinite square lattice. In stark contrast we current methods, we proceed via purely deterministic arguments relying on Viennots theory of heaps of pieces seen as a semi-commutative extension of number theory. Our approach also sheds light on the origin of the difference between exponents stemming from loop-erased walk and self-avoiding polygon models, and suggests a natural route to bridge the gap between both.
We recall that the $k$-Naples parking functions of length $n$ (a generalization of parking functions) are defined by requiring that a car which finds its preferred spot occupied must first back up a spot at a time (up to $k$ spots) before proceeding forward down the street. Note that the parking functions are the specialization of $k$ to $0$. For a fixed $0leq kleq n-1$, we define a function $varphi_k$ which maps a $k$-Naples parking function to the permutation denoting the order in which its cars park. By enumerating the sizes of the fibers of the map $varphi_k$ we give a new formula for the number of $k$-Naples parking functions as a sum over the permutations of length $n$. We remark that our formula for enumerating $k$-Naples parking functions is not recursive, in contrast to the previously known formula of Christensen et al [CHJ+20]. It can be expressed as the product of the lengths of particular subsequences of permutations, and its specialization to $k=0$ gives a new way to describe the number of parking functions of length $n$. We give a formula for the sizes of the fibers of the map $varphi_0$, and we provide a recurrence relation for its corresponding logarithmic generating function. Furthermore, we relate the $q$-analog of our formula to a new statistic that we denote $texttt{area}_k$ and call the $k$-Naples area statistic, the specialization of which to $k=0$ gives the $texttt{area}$ statistic on parking functions.
71 - Jineon Baek , Hayan Nam , 2017
Johnson recently proved Armstrongs conjecture which states that the average size of an $(a,b)$-core partition is $(a+b+1)(a-1)(b-1)/24$. He used various coordinate changes and one-to-one correspondences that are useful for counting problems about sim ultaneous core partitions. We give an expression for the number of $(b_1,b_2,cdots, b_n)$-core partitions where ${b_1,b_2,cdots,b_n}$ contains at least one pair of relatively prime numbers. We also evaluate the largest size of a self-conjugate $(s,s+1,s+2)$-core partition.
It is known that a sequence Pi_i of permutations is quasirandom if and only if the pattern density of every 4-point permutation in Pi_i converges to 1/24. We show that there is a set S of 4-point permutations such that the sum of the pattern densitie s of the permutations from S in the permutations Pi_i converges to |S|/24 if and only if the sequence is quasirandom. Moreover, we are able to completely characterize the sets S with this property. In particular, there are exactly ten such sets, the smallest of which has cardinality eight.
We prove that the set of permutations sorted by a stack of depth $t geq 3$ and an infinite stack in series has infinite basis, by constructing an infinite antichain. This answers an open question on identifying the point at which, in a sorting proces s with two stacks in series, the basis changes from finite to infinite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا