We propose new domain decomposition methods for systems of partial differential equations in two and three dimensions. The algorithms are derived with the help of the Smith factorization of the operator. This could also be validated by numerical experiments.
In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The basis is the equivalence via the Smith factorization with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Ro
bin preconditioner for the convection-diffusion equation. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be preserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ....).
In ptychography experiments, redundant scanning is usually required to guarantee the stable recovery, such that a huge amount of frames are generated, and thus it poses a great demand of parallel computing in order to solve this large-scale inverse p
roblem. In this paper, we propose the overlapping Domain Decomposition Methods(DDMs) to solve the nonconvex optimization problem in ptychographic imaging. They decouple the problem defined on the whole domain into subproblems only defined on the subdomains with synchronizing information in the overlapping regions of these subdomains,thus leading to highly parallel algorithms with good load balance. More specifically, for the nonblind recovery (with known probe in advance), by enforcing the continuity of the overlapping regions for the image (sample), the nonlinear optimization model is established based on a novel smooth-truncated amplitude-Gaussian metric (ST-AGM). Such metric allows for fast calculation of the proximal mapping with closed form, and meanwhile provides the possibility for the convergence guarantee of the first-order nonconvex optimization algorithm due to its Lipschitz smoothness. Then the Alternating Direction Method of Multipliers (ADMM) is utilized to generate an efficient Overlapping Domain Decomposition based Ptychography algorithm(OD2P) for the two-subdomain domain decomposition (DD), where all subproblems can be computed with close-form solutions.Due to the Lipschitz continuity for the gradient of the objective function with ST-AGM, the convergence of the proposed OD2P is derived under mild conditions. Moreover, it is extended to more general case including multiple-subdomain DD and blind recovery. Numerical experiments are further conducted to show the performance of proposed algorithms, demonstrating good convergence speed and robustness to the noise.
In this paper, a two-level additive Schwarz preconditioner is proposed for solving the algebraic systems resulting from the finite element approximations of space fractional partial differential equations (SFPDEs). It is shown that the condition numb
er of the preconditioned system is bounded by C(1+H/delta), where H is the maximum diameter of subdomains and delta is the overlap size among the subdomains. Numerical results are given to support our theoretical findings.
Unfitted finite element methods, e.g., extended finite element techniques or the so-called finite cell method, have a great potential for large scale simulations, since they avoid the generation of body-fitted meshes and the use of graph partitioning
techniques, two main bottlenecks for problems with non-trivial geometries. However, the linear systems that arise from these discretizations can be much more ill-conditioned, due to the so-called small cut cell problem. The state-of-the-art approach is to rely on sparse direct methods, which have quadratic complexity and are thus not well suited for large scale simulations. In order to solve this situation, in this work we investigate the use of domain decomposition preconditioners (balancing domain decomposition by constraints) for unfitted methods. We observe that a straightforward application of these preconditioners to the unfitted case has a very poor behavior. As a result, we propose a {customization} of the classical BDDC methods based on the stiffness weighting operator and an improved definition of the coarse degrees of freedom in the definition of the preconditioner. These changes lead to a robust and algorithmically scalable solver able to deal with unfitted grids. A complete set of complex 3D numerical experiments show the good performance of the proposed preconditioners.
Numerical methods for stochastic partial differential equations typically estimate moments of the solution from sampled paths. Instead, we shall directly target the deterministic equations satisfied by the first and second moments, as well as the cov
ariance. In the first part, we focus on stochastic ordinary differential equations. For the canonical examples with additive noise (Ornstein-Uhlenbeck process) or multiplicative noise (geometric Brownian motion) we derive these deterministic equations in variational form and discuss their well-posedness in detail. Notably, the second moment equation in the multiplicative case is naturally posed on projective-injective tensor product spaces as trial-test spaces. We construct Petrov-Galerkin discretizations based on tensor product piecewise polynomials and analyze their stability and convergence in these natural norms. In the second part, we proceed with parabolic stochastic partial differential equations with affine multiplicative noise. We prove well-posedness of the deterministic variational problem for the second moment, improving an earlier result. We then propose conforming space-time Petrov-Galerkin discretizations, which we show to be stable and quasi-optimal. In both parts, the outcomes are illustrated by numerical examples.