ترغب بنشر مسار تعليمي؟ اضغط هنا

On a class of Rellich inequalities

131   0   0.0 ( 0 )
 نشر من قبل Gerassimos Barbatis
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove Rellich and improved Rellich inequalities that involve the distance function from a hypersurface of codimension $k$, under a certain geometric assumption. In case the distance is taken from the boundary, that assumption is the convexity of the domain. We also discuss the best constant of these inequalities.



قيم البحث

اقرأ أيضاً

For a bounded convex domain Omega in R^N we prove refined Hardy inequalities that involve the Hardy potential corresponding to the distance to the boundary of Omega, the volume of $Omega$, as well as a finite number of sharp logarithmic corrections. We also discuss the best constant of these inequalities.
We present a unified approach to improved $L^p$ Hardy inequalities in $R^N$. We consider Hardy potentials that involve either the distance from a point, or the distance from the boundary, or even the intermediate case where distance is taken from a s urface of codimension $1<k<N$. In our main result we add to the right hand side of the classical Hardy inequality, a weighted $L^p$ norm with optimal weight and best constant. We also prove non-homogeneous improved Hardy inequalities, where the right hand side involves weighted L^q norms, q eq p.
We consider a Schrodinger hamiltonian $H(A,a)$ with scaling critical and time independent external electromagnetic potential, and assume that the angular operator $L$ associated to $H$ is positive definite. We prove the following: if $|e^{-itH(A,a)}| _{L^1to L^infty}lesssim t^{-n/2}$, then $ ||x|^{-g(n)}e^{-itH(A,a)}|x|^{-g(n)}|_{L^1to L^infty}lesssim t^{-n/2-g(n)}$, $g(n)$ being a positive number, explicitly depending on the ground level of $L$ and the space dimension $n$. We prove similar results also for the heat semi-group generated by $H(A,a)$.
We consider a general class of sharp $L^p$ Hardy inequalities in $R^N$ involving distance from a surface of general codimension $1leq kleq N$. We show that we can succesively improve them by adding to the right hand side a lower order term with optim al weight and best constant. This leads to an infinite series improvement of $L^p$ Hardy inequalities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا