ﻻ يوجد ملخص باللغة العربية
The use of the properties of actions on an algebra to enrich the study of the algebra is well-trodden and still fashionable. Here, the notion and study of endomorphic elements of (Banach) algebras are introduced. This study is initiated, in the hope that it will open up, further, the structure of (Banach) algebras in general, enrich the study of endomorphisms and provide examples. In particular, here, we use it to classify algebras for the convenience of our study. We also present results on the structure of some classes of endomorphic elements and bring out the contrast with idempotents.
For a tuple $A=(A_0, A_1, ..., A_n)$ of elements in a unital Banach algebra ${mathcal B}$, its {em projective spectrum} $p(A)$ is defined to be the collection of $z=[z_0, z_1, ..., z_n]in pn$ such that $A(z)=z_0A_0+z_1A_1+... +z_nA_n$ is not invertib
Associated to a nonzero homomorphism $varphi$ of a Banach algebra $A$, we regard special functionals, say $m_varphi$, on certain subspaces of $A^ast$ which provide equivalent statements to the existence of a bounded right approximate identity in the
A Banach algebra $A$ is said to be a zero Jordan product determined Banach algebra if every continuous bilinear map $varphicolon Atimes Ato X$, where $X$ is an arbitrary Banach space, which satisfies $varphi(a,b)=0$ whenever $a$, $bin A$ are such tha
A Banach algebra $A$ is said to be zero Lie product determined if every continuous bilinear functional $varphi colon Atimes Ato mathbb{C}$ with the property that $varphi(a,b)=0$ whenever $a$ and $b$ commute is of the form $varphi(a,b)=tau(ab-ba)$ for
$C^*$-algebras, group algebras, and the algebra $mathcal{A}(X)$ of approximable operators on a Banach space $X$ having the bounded approximation property are known to be zero product determined. We are interested in giving a quantitative estimate o