ﻻ يوجد ملخص باللغة العربية
Let A be a finite dimensional, unital, and associative algebra which is endowed with a non-degenerate and invariant inner product. We give an explicit description of an action of cyclic Sullivan chord diagrams on the normalized Hochschild cochain complex of A. As a corollary, the Hochschild cohomology of A becomes a Frobenius algebra which is endowed with a compatible BV operator. If A is also commutative, then the discussion extends to an action of general Sullivan chord diagrams. Some implications of this are discussed.
In our recent paper [Sh1] a version of the generalized Deligne conjecture for abelian $n$-fold monoidal categories is proven. For $n=1$ this result says that, given an abelian monoidal $k$-linear category $mathscr{A}$ with unit $e$, $k$ a field of ch
We prove a version of the Deligne conjecture for $n$-fold monoidal abelian categories $A$ over a field $k$ of characteristic 0, assuming some compatibility and non-degeneracy conditions for $A$. The output of our construction is a weak Leinster $(n,1
We construct cup products of two different kinds for Hopf-cyclic cohomology. When the Hopf algebra reduces to the ground field our first cup product reduces to Connes cup product in ordinary cyclic cohomology. The second cup product generalizes Conne
It is a short unpublished note from 1998. I make it public because Cuadra and Meir refer to it in their paper. We precisely state and prove a folklore result that if a finite dimensional semisimple Hopf algebra admits a weak integral form then it i
We prove the Farrell-Jones Conjecture for mapping tori of automorphisms of virtually torsion-free hyperbolic groups. The proof uses recently developed geometric methods for establishing the Farrell-Jones Conjecture by Bartels-L{u}ck-Reich, as well as