In the context of stability of the extremes of a random variable X with respect to a positive integer valued random variable N we discuss the cases (i) X is exponential (ii) non-geometric laws for N (iii) identifying N for the stability of a given X and (iv) extending the notion to a discrete random variable X.
Possible reasons for the uniqueness of the positive geometric law in the context of stability of random extremes are explored here culminating in a conjecture characterizing the geometric law. Our reasoning comes closer in justifying the geometric la
w in similar contexts discussed in Arnold et al. (1986) and Marshall & Olkin (1997) and also supplement their arguments.
In this paper we show that the family P_d of probability distributions on R^d with log-concave densities satisfies a strong continuity condition. In particular, it turns out that weak convergence within this family entails (i) convergence in total va
riation distance, (ii) convergence of arbitrary moments, and (iii) pointwise convergence of Laplace transforms. Hence the nonparametric model P_d has similar properties as parametric models such as, for instance, the family of all d-variate Gaussian distributions.
An extension of the Gaussian correlation conjecture (GCC) is proved for multivariate gamma distributions (in the sense of Krishnamoorthy and Parthasarathy). The classical GCC for Gaussian probability measures is obtained by the special case with one degree of freedom.
The mixed fractional Vasicek model, which is an extended model of the traditional Vasicek model, has been widely used in modelling volatility, interest rate and exchange rate. Obviously, if some phenomenon are modeled by the mixed fractional Vasicek
model, statistical inference for this process is of great interest. Based on continuous time observations, this paper considers the problem of estimating the drift parameters in the mixed fractional Vasicek model. We will propose the maximum likelihood estimators of the drift parameters in the mixed fractional Vasicek model with the Radon-Nikodym derivative for a mixed fractional Brownian motion. Using the fundamental martingale and the Laplace transform, both the strong consistency and the asymptotic normality of the maximum likelihood estimators have been established for all $Hin(0,1)$, $H eq 1/2$.