ترغب بنشر مسار تعليمي؟ اضغط هنا

Ghost Systems: A Vertex Algebra Point of View

87   0   0.0 ( 0 )
 نشر من قبل Andreas Honecker
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fermionic and bosonic ghost systems are defined each in terms of a single vertex algebra which admits a one-parameter family of conformal structures. The observation that these structures are related to each other provides a simple way to obtain character formulae for a general twisted module of a ghost system. The U(1) symmetry and its subgroups that underly the twisted modules also define an infinite set of invariant vertex subalgebras. Their structure is studied in detail from a W-algebra point of view with particular emphasis on Z_N-invariant subalgebras of the fermionic ghost system.



قيم البحث

اقرأ أيضاً

72 - Z. Bajnok , D. Nogradi 2000
To classify the classical field theories with W-symmetry one has to classify the symplectic leaves of the corresponding W-algebra, which are the intersection of the defining constraint and the coadjoint orbit of the affine Lie algebra if the W-algebr a in question is obtained by reducing a WZNW model. The fields that survive the reduction will obey non-linear Poisson bracket (or commutator) relations in general. For example the Toda models are well-known theories which possess such a non-linear W-symmetry and many features of these models can only be understood if one investigates the reduction procedure. In this paper we analyze the SL(n,R) case from which the so-called W_n-algebras can be obtained. One advantage of the reduction viewpoint is that it gives a constructive way to classify the symplectic leaves of the W-algebra which we had done in the n=2 case which will correspond to the coadjoint orbits of the Virasoro algebra and for n=3 which case gives rise to the Zamolodchikov algebra. Our method in principle is capable of constructing explicit representatives on each leaf. Another attractive feature of this approach is the fact that the global nature of the W-transformations can be explicitly described. The reduction method also enables one to determine the ``classical highest weight (h. w.) states which are the stable minima of the energy on a W-leaf. These are important as only to those leaves can a highest weight representation space of the W-algebra be associated which contains a ``classical h. w. state.
In this contribution, we discuss the asymptotic safety scenario for quantum gravity with a functional renormalisation group approach that disentangles dynamical metric fluctuations from the background metric. We review the state of the art in pure gr avity and general gravity-matter systems. This includes the discussion of results on the existence and properties of the asymptotically safe ultraviolet fixed point, full ultraviolet-infrared trajectories with classical gravity in the infrared, and the curvature dependence of couplings also in gravity-matter systems. The results in gravity-matter systems concern the ultraviolet stability of the fixed point and the dominance of gravity fluctuations in minimally coupled gravity-matter systems. Furthermore, we discuss important physics properties such as locality of the theory, diffeomorphism invariance, background independence, unitarity, and access to observables, as well as open challenges.
We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the result ing gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the Refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice YM simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the RG-improved Curci-Ferrari model.
87 - Lu Ding , Wei Jiang , Wei Zhang 2015
For a C1-cofinite vertex algebra V, we give an efficient way to calculate Zhus algebra A(V) of V with respect to its C1-generators and relations. We use two examples to explain how this method works.
It is known that the supermultiplet of beta-deformations of ${cal N}=4$ supersymmetric Yang-Mills theory can be described in terms of the exterior product of two adjoint representations of the superconformal algebra. We present a super-geometrical in terpretation of this fact, by evaluating the deforming operator on some special coherent states in the space of supersingletons. We also discuss generalization of this approach to other finite-dimensional deformations of the ${cal N}=4$ supersymmetric Yang-Mills theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا