ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Energy and the Fate of Universe

71   0   0.0 ( 0 )
 نشر من قبل Wang Mian
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف Mian Wang




اسأل ChatGPT حول البحث

Recent observations confirm that our universe is flat and consists of a dark energy component $Omega_{DE}simeq 0.7$. This dark energy is responsible for the cosmic acceleration as well as determines the feature of future evolution of the universe. In this paper, we discuss the dark energy of universe in the framework of scalar-tensor cosmology. It is shown that the dark energy is the main part of the energy density of the gravitational scalar field and the future universe will expand as $a(t)sim t^{1.3}$.



قيم البحث

اقرأ أيضاً

175 - Shoichi Ichinose 2012
We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called {it sphere lattice regularization}, we solve the divergence problem. The regularization utilizes the closed-string configuration. We consider 4 different approaches: 1) restriction of the integral region (Randall-Schwartz), 2) method of 1) using the minimal area surfaces, 3) introducing the weight function, 4) {it generalized path-integral}. We claim the 5 dimensional field theories are quantized properly and all divergences are renormalized. At present, it is explicitly demonstrated in the numerical way, not in the analytical way. The renormalization-group function ($be$-function) is explicitly obtained. The renormalization-group flow of the cosmological constant is concretely obtained.
We investigate a multi-field model of dark energy in this paper. We develop a model of dark energy with two multiple scalar fields, one we consider, is a multifield tachyon and the other is multi-field phantom tachyon scalars. We make an analysis of the system in phase space by considering inverse square potentials suitable for these models. Through the development of an autonomous dynamical system, the critical points and their stability analysis is performed. It has been observed that these stable critical points are satisfied by power law solutions. Moving on towards the analysis we can predict the fate of the universe. A special feature of this model is that it affects the equation of state parameter w to alter from being it greater than negative one to be less than it during the evolutionary phase of the universe. Thus, its all about the phantom divide which turns out to be decisive in the evolution of the cosmos in these models.
We study a model of the emergent dark universe, which lives on the time-like hypersurface in a five-dimensional bulk spacetime. The holographic fluid on the hypersurface is assumed to play the role of the dark sector, mainly including the dark energy and apparent dark matter. Based on the modified Friedmann equations, we present a Markov-Chain-Monte-Carlo analysis with the observational data, including type Ia Supernova and the direct measurement of the Hubble constant. We obtain a good fitting result and the matter component turns out to be small enough, which matches well with our theoretical assumption that only the normal matter is required. After considering the fitting parameters, an effective potential of the model with a dynamical scalar field is reconstructed. The parameters in the swampland criteria are extracted, and they satisfy the criteria at the present epoch but are in tension with the criteria if the potential is extended to the future direction. The method to reconstruct the potential is helpful to study the swampland criteria of other models without an explicit scalar field.
396 - Joshua Frieman 2008
The discovery ten years ago that the expansion of the Universe is accelerating put in place the last major building block of the present cosmological model, in which the Universe is composed of 4% baryons, 20% dark matter, and 76% dark energy. At the same time, it posed one of the most profound mysteries in all of science, with deep connections to both astrophysics and particle physics. Cosmic acceleration could arise from the repulsive gravity of dark energy -- for example, the quantum energy of the vacuum -- or it may signal that General Relativity breaks down on cosmological scales and must be replaced. We review the present observational evidence for cosmic acceleration and what it has revealed about dark energy, discuss the various theoretical ideas that have been proposed to explain acceleration, and describe the key observational probes that will shed light on this enigma in the coming years.
The LHC will probe the nature of the vacuum that determines the properties of particles and the forces between them. Of particular importance is the fact that our current theories allow the Universe to be trapped in a metastable vacuum, which may dec ay in the distant future, changing the nature of matter. This could be the case in the Standard Model if the LHC finds the Higgs boson to be light. Supersymmetry is one favoured extension of the Standard Model which one might invoke to try to avoid such instability. However, many supersymmetric models are also condemned to vacuum decay for different reasons. The LHC will be able to distinguish between different supersymmetric models, thereby testing the stability of the vacuum, and foretelling the fate of the Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا