ﻻ يوجد ملخص باللغة العربية
This is a brief review of the Schrodingers factorization method and its relations to supersymmetric quantum mechanics and its nonlinear (parastatistical, etc) modifications, self-similar infinite soliton potentials, quantum algebras, coherent states, Ising chains, discretized random matrices and 2D lattice Coulomb gases.
We investigate a (1+1)-dimensional nonlinear field theoretic model with the field potential $V(phi)| = |phi|.$ It can be obtained as the universal small amplitude limit in a class of models with potentials which are symmetrically V-shaped at their mi
We investigate Hawking evaporation in a recently suggested picture in which black holes are Bose condensates of gravitons at a quantum critical point. There, evaporation of a black hole is due to two intertwined effects. Coherent excitation of a tach
The method of self-similar factor approximants is completed by defining the approximants of odd orders, constructed from the power series with the largest term of an odd power. It is shown that the method provides good approximations for transcendent
Given a graph $E$, an action of a group $G$ on $E$, and a $G$-valued cocycle $phi$ on the edges of $E$, we define a C*-algebra denoted ${cal O}_{G,E}$, which is shown to be isomorphic to the tight C*-algebra associated to a certain inverse semigroup
We investigate strongly correlated non-Abelian plasmas out of equilibrium. Based on numerical simulations, we establish a self-similar scaling property for the time evolution of spatial Wilson loops that characterizes a universal state of matter far