ﻻ يوجد ملخص باللغة العربية
We consider a class of multi-matrix models with an action which is O(D) invariant, where D is the number of NxN Hermitian matrices X_mu, mu=1,...,D. The action is a function of all the elementary symmetric functions of the matrix $T_{mu u}=Tr(X_mu X_ u)/N$. We address the issue whether the O(D) symmetry is spontaneously broken when the size N of the matrices goes to infinity. The phase diagram in the space of the parameters of the model reveals the existence of a critical boundary where the O(D) symmetry is maximally broken.
The IKKT matrix model is a promising candidate for a nonperturbative formulation of superstring theory, in which spacetime is conjectured to emerge dynamically from the microscopic matrix degrees of freedom in the large-$N$ limit. Indeed in the Loren
We show that in ORaifeartaigh models of spontaneous supersymmetry breaking, R-symmetries can be broken by non-zero values of fields at tree level, rather than by vacuum expectation values of pseudomoduli at loop level. As a complement of the recent r
We construct a class of matrix models, where supersymmetry (SUSY) is spontaneously broken at the matrix size $N$ infinite. The models are obtained by dimensional reduction of matrix-valued SUSY quantum mechanics. The potential of the models is slowly
We review and expand upon recent work demonstrating that Weyl invariant theories can be broken inertially, which does not depend upon a potential. This can be understood in a general way by the current algebra of these theories, independently of spec
In the triangular layered magnet PdCrO2 the intralayer magnetic interactions are strong, however the lattice structure frustrates interlayer interactions. In spite of this, long-range, 120$^circ$ antiferromagnetic order condenses at $T_N = 38$~K. We