ﻻ يوجد ملخص باللغة العربية
We suggest the Hamiltonian approach for fluid mechanics based on the dynamics, formulated in terms of Lagrangian variables. The construction of the canonical variables of the fluid sheds a light of the origin of Clebsh variables, introduced in the previous century. The developed formalism permits to relate the circulation conservation (Tompson theorem) with the invariance of the theory with respect to special diffiomorphisms and establish also the new conservation laws. We discuss also the difference of the Eulerian and Lagrangian description, pointing out the incompleteness of the first. The constructed formalism is also applicable for ideal plasma. We conclude with several remarks on the quantization of the fluid.
We described the $q$-deformed phase space. The $q$-deformed Hamilton eqations of motion are derived and discussed. Some simple models are considered.
We show that the Quantum Hall Soliton constructed in cite{giantbob} is stable under small perturbations. We find that creating quasiparticles actually lowers the energy of the system, and discuss whether this indicates an instability on the time scales relevant to the problem.
A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the r
The explicit form of the Wess-Zumino term of the PST super 5-brane Lagrangian in 11 dimensions is obtained. A complete canonical analysis for a gauge fixed PST super 5-brane action reveals the expected mixture of first and second class constraints. T
We show that the correct dual hydrodynamic description of homogeneous holographic models with spontaneously broken translations must include the so-called strain pressure -- a novel transport coefficient proposed recently. Taking this new ingredient