ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Hamiltonian Description of Fluid Mechanics

366   0   0.0 ( 0 )
 نشر من قبل George Pronko
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest the Hamiltonian approach for fluid mechanics based on the dynamics, formulated in terms of Lagrangian variables. The construction of the canonical variables of the fluid sheds a light of the origin of Clebsh variables, introduced in the previous century. The developed formalism permits to relate the circulation conservation (Tompson theorem) with the invariance of the theory with respect to special diffiomorphisms and establish also the new conservation laws. We discuss also the difference of the Eulerian and Lagrangian description, pointing out the incompleteness of the first. The constructed formalism is also applicable for ideal plasma. We conclude with several remarks on the quantization of the fluid.



قيم البحث

اقرأ أيضاً

We described the $q$-deformed phase space. The $q$-deformed Hamilton eqations of motion are derived and discussed. Some simple models are considered.
We show that the Quantum Hall Soliton constructed in cite{giantbob} is stable under small perturbations. We find that creating quasiparticles actually lowers the energy of the system, and discuss whether this indicates an instability on the time scales relevant to the problem.
A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the r eference Hamiltonian. The nonlinear double-bracket equation governing the flow is such that the eigenvalues of the initial Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by compact invariant subspaces, which permits the construction of statistical distributions over the Hamiltonians. In two dimensions, an explicit dynamical model is introduced, wherein the density function on the space of Hamiltonians approaches an equilibrium state characterised by the canonical ensemble. This is used to compute quenched and annealed averages of quantum observables.
The explicit form of the Wess-Zumino term of the PST super 5-brane Lagrangian in 11 dimensions is obtained. A complete canonical analysis for a gauge fixed PST super 5-brane action reveals the expected mixture of first and second class constraints. T he canonical Hamiltonian is quadratic in the antisymmetric gauge field. Finally, we find the light cone gauge Hamiltonian for the theory and its stability properties are commented.
We show that the correct dual hydrodynamic description of homogeneous holographic models with spontaneously broken translations must include the so-called strain pressure -- a novel transport coefficient proposed recently. Taking this new ingredient into account, we investigate the near-equilibrium dynamics of a large class of holographic models and faithfully reproduce all the hydrodynamic modes present in the quasinormal mode spectrum. Moreover, while strain pressure is characteristic of equilibrium configurations which do not minimise the free energy, we argue and show that it also affects models with no background strain, through its temperature derivatives. In summary, we provide a first complete matching between the holographic models with spontaneously broken translations and their effective hydrodynamic description.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا