ترغب بنشر مسار تعليمي؟ اضغط هنا

A Brane World Solution to the Cosmological Constant Problem

73   0   0.0 ( 0 )
 نشر من قبل Ira Wasserman
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a model with two parallel (positive tension) 3-branes separated by a distance $L$ in 5-dimensional spacetime. If the interbrane space is anti-deSitter, or is not precisely anti-deSitter but contains no event horizons, the effective 4-dimensional cosmological constant seen by observers on one of the branes (chosen to be the visible brane) becomes exponentially small as $L$ grows large.



قيم البحث

اقرأ أيضاً

We introduce a novel method to circumvent Weinbergs no-go theorem for self-tuning the cosmological vacuum energy: a Lorentz-violating finite-temperature superfluid can counter the effects of an arbitrarily large cosmological constant. Fluctuations of the superfluid result in the graviton acquiring a Lorentz-violating mass and we identify a unique class of theories that are pathology free, phenomenologically viable, and do not suffer from instantaneous modes. This new and hitherto unidentified phase of massive gravity propagates the same degrees of freedom as general relativity with an additional Lorentz-violating scalar that is introduced by higher-derivative operators in a UV insensitive manner. The superfluid is therefore a consistent infrared modification of gravity. We demonstrate how the superfluid can degravitate a cosmological constant and discuss its phenomenology.
In self-tuning brane-world models with extra dimensions, large contributions to the cosmological constant are absorbed into the curvature of extra dimensions and consistent with flat 4d geometry. In models with conventional Lagrangians fine-tuning is needed nevertheless to ensure a finite effective Planck mass. Here, we consider a class of models with non conventional Lagrangian in which known problems can be avoided. Unfortunately these models are found to suffer from tachyonic instabilities. An attempt to cure these instabilities leads to the prediction of a positive cosmological constant, which in turn needs a fine-tuning to be consistent with observations.
We discuss the possibility of a dynamical solution to the cosmological constant problem in the contaxt of six-dimensional Einstein-Maxwell theory. A definite answer requires an understanding of the full bulk cosmology in the early universe, in which the bulk has time-dependent size and shape. We comment on the special properties of codimension two as compared to higher codimensions.
In Randall-Sundrum-type brane-world cosmologies, density perturbations generate Weyl curvature in the bulk, which in turn backreacts on the brane via stress-energy perturbations. On large scales, the perturbation equations contain a closed system on the brane, which may be solved without solving for the bulk perturbations. Bulk effects produce a non-adiabatic mode, even when the matter perturbations are adiabatic, and alter the background dynamics. As a consequence, the standard evolution of large-scale fluctuations in general relativity is modified. The metric perturbation on large-scales is not constant during high-energy inflation. It is constant during the radiation era, except at most during the very beginning, if the energy is high enough.
Renormalization group (RG) applications to cosmological problems often encounter difficulties in the interpretation of the field independent term in the effective potential. While this term is constant with respect to field variations, it generally d epends on the RG scale k. Since the RG running could be associated with the temporal evolution of the Universe according to the identification $k sim 1/t$, one can treat the field independent constant, i.e., the $Lambda$ term in Einsteins equations as a running (scale-dependent) parameter. Its scale dependence can be described by nonperturbative RG, but it has a serious drawback, namely $k^4$ and $k^2$ terms appear in the RG flow in its high-energy (UV) limit which results in a rampant divergent behaviour. Here, we propose a subtraction method to handle this unphysical UV scaling and provides us a framework to build up a reliable solution to the cosmological constant problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا