ﻻ يوجد ملخص باللغة العربية
We compute the braiding for the `principal gradation of $U_q(hat{{it sl}_2})$ for $|q|=1$ from first principles, starting from the idea of a rigid braided tensor category. It is not necessary to assume either the crossing or the unitarity condition from S-matrix theory. We demonstrate the uniqueness of the normalisation of the braiding under certain analyticity assumptions, and show that its convergence is critically dependent on the number-theoretic properties of the number $tau$ in the deformation parameter $q=e^{2pi itau}$. We also examine the convergence using probability, assuming a uniform distribution for $q$ on the unit circle.
We define and calculate the fusion algebra of WZW model at a rational level by cohomological methods. As a byproduct we obtain a cohomological characterization of admissible representations of $widehat{gtsl}_{2}$.
We described the $q$-deformed phase space. The $q$-deformed Hamilton eqations of motion are derived and discussed. Some simple models are considered.
We use the isomorphisms between the $R$-matrix and Drinfeld presentations of the quantum affine algebras in types $B$, $C$ and $D$ produced in our previous work to describe finite-dimensional irreducible representations in the $R$-matrix realization.
The Demazure character formula is applied to the Verlinde formula for affine fusion rules. We follow Littelmanns derivation of a generalized Littlewood-Richardson rule from Demazure characters. A combinatorial rule for affine fusions does not result,
In this lecture we discuss `beyond CFT from symmetry point of view. After reviewing the Virasoro algebra, we introduce deformed Virasoro algebras and elliptic algebras. These algebras appear in solvable lattice models and we study them by free field approach.