ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive Symmetric Space sine-Gordon Soliton Theories and Perturbed Conformal Field Theory

109   0   0.0 ( 0 )
 نشر من قبل J. Luis Miramontes
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The perturbed conformal field theories corresponding to the massive Symmetric Space sine-Gordon soliton theories are identified by calculating the central charge of the unperturbed conformal field theory and the conformal dimension of the perturbation. They are described by an action with a positive-definite kinetic term and a real potential term bounded from below, their equations of motion are non-abelian affine Toda equations and, moreover, they exhibit a mass gap. The unperturbed CFT corresponding to the compact symmetric space G/G_0 is either the WZNW action for G_0 or the gauged WZNW action for a coset of the form G_0/U(1)^p. The quantum integrability of the theories that describe perturbations of a WZNW action, named Split models, is established by showing that they have quantum conserved quantities of spin +3 and -3. Together with the already known results for the other massive theories associated with the non-abelian affine Toda equations, the Homogeneous sine-Gordon theories, this supports the conjecture that all the massive Symmetric Space sine-Gordon theories will be quantum integrable and, hence, will admit a factorizable S-matrix. The general features of the soliton spectrum are discussed, and some explicit soliton solutions for the Split models are constructed. In general, the solitons will carry both topological charges and abelian Noether charges. Moreover, the spectrum is expected to include stable and unstable particles.



قيم البحث

اقرأ أيضاً

Two series of integrable theories are constructed which have soliton solutions and can be thought of as generalizations of the sine-Gordon theory. They exhibit internal symmetries and can be described as gauged WZW theories with a potential term. The spectrum of massive states is determined.
Using the proposed AdS/CFT correspondence, we calculate the correlators of operators of conformal field theory at the boundary of AdS$_{d+1}$ corresponding to the sine-Gordon model in the bulk.
The g-function was introduced by Affleck and Ludwig as a measure of the ground state degeneracy of a conformal boundary condition. We consider this function for perturbations of the conformal Yang-Lee model by bulk and boundary fields using conformal perturbation theory, the truncated conformal space approach and the thermodynamic Bethe Ansatz (TBA). We find that the TBA equations derived by LeClair et al describe the massless boundary flows, up to an overall constant, but are incorrect when one considers a simultaneous bulk perturbation; however the TBA equations do correctly give the `non-universal linear term in the massive case, and the ratio of g-functions for different boundary conditions is also correctly produced. This ratio is related to the Y-system of the Yang-Lee model and by comparing the perturbative expansions of the Y-system and of the g-functions we obtain the exact relation between the UV and IR parameters of the massless perturbed boundary model.
We consider $lambdaphi^{4}$ kink and sine-Gordon soliton in the presence of a minimal length uncertainty proportional to the Planck length. The modified Hamiltonian contains an extra term proportional to $p^4$ and the generalized Schrodinger equation is expressed as a forth-order differential equation in quasiposition space. We obtain the modified energy spectrum for the discrete states and compare our results with 1-loop resummed and Hartree approximations for the quantum fluctuations. We finally find some lower bounds for the deformations parameter so that the effects of the minimal length have the dominant role.
The semi-classical spectrum of the Homogeneous sine-Gordon theories associated with an arbitrary compact simple Lie group G is obtained and shown to be entirely given by solitons. These theories describe quantum integrable massive perturbations of Ge pners G-parafermions whose classical equations-of-motion are non-abelian affine Toda equations. One-soliton solutions are constructed by embeddings of the SU(2) complex sine-Gordon soliton in the regular SU(2) subgroups of G. The resulting spectrum exhibits both stable and unstable particles, which is a peculiar feature shared with the spectrum of monopoles and dyons in N=2 and N=4 supersymmetric gauge theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا