ﻻ يوجد ملخص باللغة العربية
The perturbed conformal field theories corresponding to the massive Symmetric Space sine-Gordon soliton theories are identified by calculating the central charge of the unperturbed conformal field theory and the conformal dimension of the perturbation. They are described by an action with a positive-definite kinetic term and a real potential term bounded from below, their equations of motion are non-abelian affine Toda equations and, moreover, they exhibit a mass gap. The unperturbed CFT corresponding to the compact symmetric space G/G_0 is either the WZNW action for G_0 or the gauged WZNW action for a coset of the form G_0/U(1)^p. The quantum integrability of the theories that describe perturbations of a WZNW action, named Split models, is established by showing that they have quantum conserved quantities of spin +3 and -3. Together with the already known results for the other massive theories associated with the non-abelian affine Toda equations, the Homogeneous sine-Gordon theories, this supports the conjecture that all the massive Symmetric Space sine-Gordon theories will be quantum integrable and, hence, will admit a factorizable S-matrix. The general features of the soliton spectrum are discussed, and some explicit soliton solutions for the Split models are constructed. In general, the solitons will carry both topological charges and abelian Noether charges. Moreover, the spectrum is expected to include stable and unstable particles.
Two series of integrable theories are constructed which have soliton solutions and can be thought of as generalizations of the sine-Gordon theory. They exhibit internal symmetries and can be described as gauged WZW theories with a potential term. The spectrum of massive states is determined.
Using the proposed AdS/CFT correspondence, we calculate the correlators of operators of conformal field theory at the boundary of AdS$_{d+1}$ corresponding to the sine-Gordon model in the bulk.
The g-function was introduced by Affleck and Ludwig as a measure of the ground state degeneracy of a conformal boundary condition. We consider this function for perturbations of the conformal Yang-Lee model by bulk and boundary fields using conformal
We consider $lambdaphi^{4}$ kink and sine-Gordon soliton in the presence of a minimal length uncertainty proportional to the Planck length. The modified Hamiltonian contains an extra term proportional to $p^4$ and the generalized Schrodinger equation
The semi-classical spectrum of the Homogeneous sine-Gordon theories associated with an arbitrary compact simple Lie group G is obtained and shown to be entirely given by solitons. These theories describe quantum integrable massive perturbations of Ge