ﻻ يوجد ملخص باللغة العربية
We develop a new representation for the integrals associated with Feynman diagrams. This leads directly to a novel method for the numerical evaluation of these integrals, which avoids the use of Monte Carlo techniques. Our approach is based on based on the theory of generalized sinc ($sin(x)/x$) functions, from which we derive an approximation to the propagator that is expressed as an infinite sum. When the propagators in the Feynman integrals are replaced with the approximate form all integrals over internal momenta and vertices are converted into Gaussians, which can be evaluated analytically. Performing the Gaussians yields a multi-dimensional infinite sum which approximates the corresponding Feynman integral. The difference between the exact result and this approximation is set by an adjustable parameter, and can be made arbitrarily small. We discuss the extraction of regularization independent quantities and demonstrate, both in theory and practice, that these sums can be evaluated quickly, even for third or fourth order diagrams. Lastly, we survey strategies for numerically evaluating the multi-dimensional sums. We illustrate the method with specific examples, including the the second order sunset diagram from quartic scalar field theory, and several higher-order diagrams. In this initial paper we focus upon scalar field theories in Euclidean spacetime, but expect that this approach can be generalized to fields with spin.
We extend our new approach for numeric evaluation of Feynman diagrams to integrals that include fermionic and vector propagators. In this initial discussion we begin by deriving the Sinc function representation for the propagators of spin-1/2 and spi
We briefly discuss the transcendental constants generated through the epsilon-expansion of generalized hypergeometric functions and their interrelation with the sixth root of unity.
The forward Compton amplitude describes the process of virtual photon scattering from a hadron and provides an essential ingredient for the understanding of hadron structure. As a physical amplitude, the Compton tensor naturally includes all target m
Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intrica
Co-operation of the Feynman DIagram ANAlyzer (DIANA) with the underlying operational system (UNIX) is presented. We discuss operators to run external commands and a recent development of parallel processing facilities and an extension in the spirit of a component model.