ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal hadron production in high energy collisions

140   0   0.0 ( 0 )
 نشر من قبل Francesco Becattini
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English
 تأليف F. Becattini




اسأل ChatGPT حول البحث

It is shown that hadron abundances in high energy e+e-, pp and p{bar p} collisions, calculated by assuming that particles originate in hadron gas fireballs at thermal and partial chemical equilibrium, are in very good agreement with the data. The freeze-out temperature of the hadron gas fireballs turns out to be nearly constant over a large center of mass energy range and not dependent on the initial colliding system. The only deviation from chemical equilibrium resides in the incomplete strangeness phase space saturation. Preliminary results of an analysis of hadron abundances in S+S and S+Ag heavy ion collisions are presented.



قيم البحث

اقرأ أيضاً

Quarkonium production in high-energy proton (deuteron)-nucleus collisions is investigated in the color glass condensate framework. We employ the color evaporation model assuming that the quark pair produced from dense small-x gluons in the nuclear ta rget bounds into a quarkonium outside the target. The unintegrated gluon distribution at small Bjorken x in the nuclear target is treated with the Balitsky-Kovchegov equation with running coupling corrections. For the gluons in the proton, we examine two possible descriptions, unintegrated gluon distribution and ordinary collinear gluon distribution. We present the transverse momentum spectrum and nuclear modification factor for J/psi production at RHIC and LHC energies, and those for Upsilon(1S) at LHC energy, and discuss the nuclear modification factor and the momentum broadening by changing the rapidity and the initial saturation scale.
441 - P. Castorina , H. Satz 2015
The interpretation of quark ($q$)- antiquark ($bar q$) pairs production and the sequential string breaking as tunneling through the event horizon of colour confinement leads to a thermal hadronic spectrum with a universal Unruh temperature, $T simeq 165$ Mev,related to the quark acceleration, $a$, by $T=a/2pi$. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilibrium and hence a suppression of strange particle production in elementary collisions. In nucleus-nucleus collisions, where the quark density is much bigger, one has to introduce an average temperature (acceleration) which dilutes the quark mass effect and the strangeness suppression almost disappears.
Parton distribution functions (PDFs) describe the structure of hadrons as composed of quarks and gluons. They are needed to make predictions for short-distance processes in high-energy collisions and are determined by fitting to cross section data. W e review definitions of the PDFs and their relations to high-energy cross sections. We focus on the PDFs in protons, but also discuss PDFs in nuclei. We review in some detail the standard statistical treatment needed to fit the PDFs to data using the Hessian method. We discuss tests that can be used to critically examine whether the assumptions are indeed valid. We also present some ideas of what one can do in the case that the tests indicate that the assumptions fail.
We present a comprehensive analysis of hadron production in e+e- collisions at different center-of-mass energies in the framework of the statistical model of the hadron resonance gas. The model is formulated in the canonical ensemble with exact conse rvation of all relevant quantum numbers. The parameters of the underlying model were determined using a fit to the average multiplicities of the latest measurements at $sqrt{s}$ = 10, 29-35, 91 and 130-200 GeV. The results demonstrate that, within the accuracy of the experiments, none of the data sets is satisfactorily described with this approach, calling into question the notion that particle production in e+e- collisions is thermal in origin.
The distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. This linear extrapolation is applied to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets. The deviation from linear scaling in the atomic number A can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4 +/- 0.1 fm/c. Then we apply the linear extrapolation to measured J/psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/psi on nuclear targets. Finally, we compare to recent J/psi data from S+U and Pb+Pb collisions at the SPS. The former are reproduced reasonably well with no new parameters, but not the latter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا