ﻻ يوجد ملخص باللغة العربية
Using precision electroweak data, we put limits on ``natural top-color assisted technicolor models. Generically the new $U(1)$ gauge bosons in these models must have masses larger than roughly 2 TeV, although in certain (seemingly unrealistic) models the bound can be much lower.
We reconsider the constraints on Universal Extra Dimensions (UED) models arising from precision electroweak data. We take into account the subleading contributions from new physics (expressed in terms of the X,Y ... variables), as well as two loop co
This is a pedagogical and self-contained review on obtaining electroweak precision constraints on TeV scale new physics using the effective theory method. We identify a set of relevant effective operators in the standard model and calculate from them
Pair-production of heavy top quarks at the Tevatron Collider is significantly enhanced by the color--octet technipion, $eta_T$, occurring in multiscale models of walking technicolor. We discuss $bar tt$ rates for $m_t = 170$ GeV and $M_{eta_T} = 400-
In the framework of topcolor-assisted technicolor model we calculate the contributions from the pseudo Goldstone bosons and new gauge bosons to $e^+e^- to tbar{t}$. We find that, for reasonable ranges of the parameters, the pseudo Goldstone bosons af
We revisit the global fit to electroweak precision observables in the Standard Model and present model-independent bounds on several general new physics scenarios. We present a projection of the fit based on the expected experimental improvements at