ﻻ يوجد ملخص باللغة العربية
Inspired by the corresponding problem in QCD, we determine the pressure of massless O(N) scalar field theory up to order g^6 in the weak-coupling expansion, where g^2 denotes the quartic coupling constant. This necessitates the computation of all 4-loop vacuum graphs at a finite temperature: by making use of methods developed by Arnold and Zhai at 3-loop level, we demonstrate that this task is manageable at least if one restricts to computing the logarithmic terms analytically, while handling the ``constant 4-loop contributions numerically. We also inspect the numerical convergence of the weak-coupling expansion after the inclusion of the new terms. Finally, we point out that while the present computation introduces strategies that should be helpful for the full 4-loop computation on the QCD-side, it also highlights the need to develop novel computational techniques, in order to be able to complete this formidable task in a systematic fashion.
We use the boundary effective theory (BET) approach to thermal field theory in order to calculate the pressure of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared physics, and is essentially non
We compute the two-loop massless QCD corrections to the four-point amplitude $g+g rightarrow H+H$ resulting from effective operator insertions that describe the interaction of a Higgs boson with gluons in the infinite top quark mass limit. This ampli
We consider a symmetric scalar theory with quartic coupling in 4-dimensions. We show that the 4 loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare coupling constant which is introduced at the leve
We solve analytically the renormalization-group equation for the potential of the O(N)-symmetric scalar theory in the large-N limit and in dimensions 2<d<4, in order to look for nonperturbative fixed points that were found numerically in a recent stu
Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infnite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is