ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of pion elliptic flows and HBT interferometry in a granular quark-gluon plasma droplet model

54   0   0.0 ( 0 )
 نشر من قبل Cheuk-Yin Wong
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Wei-Ning Zhang




اسأل ChatGPT حول البحث

In many simulations of high-energy heavy-ion collisions on an event-by-event analysis, it is known that the initial energy density distribution in the transverse plane is highly fluctuating. Subsequent longitudinal expansion will lead to many longitudinal tubes of quark-gluon plasma which have tendencies to break up into many spherical droplets because of sausage instabilities. We are therefore motivated to use a model of quark-gluon plasma granular droplets that evolve hydrodynamically to investigate pion elliptic flows and Hanbury-Brown-Twiss interferometry. We find that the data of pion transverse momentum spectra, elliptic flows, and HBT radii in sqrt{s_{NN}}=200 GeV Au + Au collisions at RHIC can be described well by an expanding source of granular droplets with an anisotropic velocity distribution.



قيم البحث

اقرأ أيضاً

135 - Sven Soff 2000
We calculate the Gaussian radius parameters of the pion-emitting source in high energy heavy ion collisions, assuming a first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons. Such a model leads to a very long-li ved dissipative hadronic rescattering phase which dominates the properties of the two-pion correlation functions. The radii are found to depend only weakly on the thermalization time tau_i, the critical temperature T_c (and thus the latent heat), and the specific entropy of the QGP. The dissipative hadronic stage enforces large variations of the pion emission times around the mean. Therefore, the model calculations suggest a rapid increase of R_out/R_side as a function of K_T if a thermalized QGP were formed.
Thermal and interfacial properties of a QGP droplet in a hadronic medium are computed using a statistical model of the system. The results indicate a weakly first order transition at a transition temperature sim (160 pm 5) MeV. The interfacial surfac e tension is proportional to the cube of the transition temperaure irrespective of the magnitude of the transition temperature. The velocity of sound in the QGP droplet is predicted to be in the range (0.27 pm 0.02) times the velocity of light in vacuum, and this value is seen to be independent of the value of the transition temperature as well as the model parameters. These predictions are in remarkable agreement with Lattice Simulation results and extant MIT Bag model predictions.
109 - C. Gale , Y. Hidaka , S. Jeon 2014
We consider the thermal production of dileptons and photons at temperatures above the critical temperature in QCD. We use a model where color excitations are suppressed by a small value of the Polyakov loop, the semi Quark-Gluon Plasma (QGP). Compari ng the semi-QGP to the perturbative QGP, we find a mild enhancement of thermal dileptons. In contrast, to leading logarithmic order in weak coupling there are far fewer hard photons from the semi-QGP than the usual QGP. To illustrate the possible effects on photon and dileptons production in heavy ion collisions, we integrate the rate with a realistic hydrodynamic simulation. Dileptons uniformly exhibit a small flow, but the strong suppression of photons in the semi-QGP tends to bias the elliptical flow of photons to that generated in the hadronic phase.
Wakes created by a parton moving through a static and infinitely extended quark-gluon plasma are considered. In contrast to former investigations collisions within the quark-gluon plasma are taken into account using a transport theoretical approach ( Boltzmann equation) with a Bhatnagar-Gross-Krook collision term. Within this model it is shown that the wake structure changes significantly compared to the collisionless case.
232 - Salah Hamieh 2000
Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the propertie s of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb--Pb interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا