ﻻ يوجد ملخص باللغة العربية
We present the correlation of low energy CP phases, both Dirac and Majorana, and the lepton asymmetry for the baryon asymmetry in the universe, with a certain class of Yukawa matrices that consist of two right-handed neutrinos and include one texture zero in themselves. For cases in which the amount of the lepton asymmetry $Y_L$ turns out to be proportional to $theta_{13}^2$, we consider the relation between two types of CP phases and the relation of $Y_L$ versus the Jarlskog invariant or the amplitude of neutrinoless double beta decay as $theta_{13}$ varies.
We propose an extension of tri-bimaximal mixing to include a non-zero reactor angle $theta_{13}$ while maintaining the tri-bimaximal predictions for the atmospheric angle $theta_{23}=45^o$ and solar angle $theta_{12}=35^o$. We show how such tri-bimax
The Double Chooz experiment presents improved measurements of the neutrino mixing angle $theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear
Renormalization group (RG) evolution of the neutrino mass matrix may take the value of the mixing angle $theta_{13}$ very close to zero, or make it vanish. On the other hand, starting from $theta_{13}=0$ at the high scale it may be possible to genera
We show how the two physically-distinct sources of CP-asymmetry relevant to scenarios of leptogenesis: (i) resonant mixing and (ii) oscillations between different flavours can be unambiguously identified within the Kadanoff-Baym formalism. These cont
We study the lepton flavor models with the flavor symmetry (Z_N times Z_N times Z_N)rtimes Z_3. Our models predict non-vanishing discrete values of theta_{13} as well as theta_{12} and theta_{23} depending on N. For certain values, our models realize