ﻻ يوجد ملخص باللغة العربية
The 1/N_c expansion for the baryon distribution amplitude is constructed in terms of a specially designed generating functional. At large N_c this functional shows exponential behavior. The exponential factor is universal for all low-lying baryons and baryon-meson scattering states. Simple factorization properties are established for the preexponential term. This factorization agrees with the large-N_c contracted SU(2N_f) spin-flavor symmetry. The consistency of the factorization with the soft-pion theorem for the baryon distribution amplitude is explicitly checked. A relation between the generating functionals for the distribution amplitudes of the nucleon and the Delta resonance is derived.
The pion distribution amplitude (DA) can be related to the fundamental QCD Greens functions as a function of the quark self-energy and the quark-pion vertex, which in turn are associated with the pion wave function through the Bethe-Salpeter equation
We study the behavior with the number of colors (Nc) of the two poles associated to the Lambda(1405) resonance obtained dynamically within the chiral unitary approach. The leading order chiral meson-baryon interaction manifests a nontrivial Nc depend
The structure of the 1/Nc expansion for the baryon distribution amplitude in QCD is tested using quark models. Earlier conjectures about this structure based on the evolution equation and on the soft-pion theorem are confirmed by the model analysis.
Recent BaBaR data on the pion transition form factor, whose Q^2 dependence is much steeper then predicted by asymptotic Quantum Chromodynamics (QCD), have caused a renewed interest in its theoretical description. We present here a formalism based on
We calculate large mass diphoton exclusive photoproduction in the framework of collinear QCD factorization at next to leading order in {alpha}s and at leading twist. Collinear divergences of the coefficient function are absorbed by the evolution of t