ﻻ يوجد ملخص باللغة العربية
Medium-induced gluon radiation from massless and massive quarks is treated in the same formalism. The dead cone which regulates gluon radiation from massive quarks in the vacuum at small angles, is filled in the medium but constitutes a small fraction of the available phase space. Our study indicates that the energy loss for charmed hadrons at RHIC should be smaller than for light hadrons, but still sizable.
We calculate the soft gluon radiation spectrum off heavy quarks (HQs) interacting with light quarks (LQs) beyond small angle scattering (eikon- ality) approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the lit
When an energetic parton propagates in a hot and dense QCD medium it loses energy by elastic scatterings or by medium-induced gluon radiation. The gluon radiation spectrum is suppressed at high frequency due to the LPM effect and encompasses two regi
We consider the production of four charged leptons in hadron collisions and compute the next-to-leading order (NLO) QCD corrections to the loop-induced gluon fusion contribution by consistently accounting for the Higgs boson signal, its corresponding
Within a light-cone quantum-chromodynamics dipole formalism based on the Green function technique, we study nuclear shadowing in deep-inelastic scattering at small Bjorken xB < 0.01. Such a formalism incorporates naturally color transparency and cohe
We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our