ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative events in DIS of unpolarized electron by tensor polarized deuteron. Radiative events

60   0   0.0 ( 0 )
 نشر من قبل Olga Shekhovtsova
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

DIS of unpolarized electron by tensor-polarized deuteron with tagged collinear photon, radiated from initial electron, was considered. The cross section is derived in the Born approximation. The model-independent QED corrections to the Born cross section are also calculated using approach based on the account of all essential Feynman diagrams.



قيم البحث

اقرأ أيضاً

A new Monte-Carlo generator including real radiated photons in DIS on polarized and unpolarized targets is presented. Analytical and numerical tests are performed and discussed in details.
The one-loop NLO radiative corrections to the observables in polarized DIS using assumption that a quark is an essential massive particle are considered. If compared with classical QCD formulae the obtained results are identical for the unpolarized a nd different for polarized sum rules, that can be explained as the influence of the finite quark mass effects on NLO QCD corrections. The explicit expression for one-loop NLO QCD contribution to the structure function g_2 is presented.
The differential cross section for elastic scattering of deuterons on electrons at rest is calculated taking into account the QED radiative corrections to the leptonic part of interaction. These model-independent radiative corrections arise due to em ission of the virtual and real soft and hard photons as well as to vacuum polarization. We consider an experimental setup where both final particles are recorded in coincidence and their energies are determined within some uncertainties. The kinematics, the cross section, and the radiative corrections are calculated and numerical results are presented.
We describe how the various outcomes of stellar tidal disruption give rise to observable radiation. We separately consider the cases where gas circularizes rapidly into an accretion disc, as well as the case when shocked debris streams provide the ob servable emission without having fully circularized. For the rapid circularization case, we describe how outflows, absorption by reprocessing layers, and Comptonization can cause the observed radiation to depart from that of a bare disc, possibly giving rise to the observed optical/UV emission along with soft X-rays from the disc. If, instead, most of the debris follows highly eccentric orbits for a significant time, many properties of the observed optical/UV emission can be explained by the scale of those eccentric orbits and the shocks embedded in the debris flow near orbital apocenter. In this picture, soft X-ray emission at early times results from the smaller amount of debris mass deflected into a compact accretion disc by weak shocks near the stellar pericenter. A general proposal for the near-constancy of the ultraviolet/optical color temperatures is provided, by linking it to incomplete thermalization of radiation in the atmosphere of the emitting region. We also briefly discuss the radio signals from the interaction of unbound debris and jets with the black hole environment.
In this work, we investigate the possibility of probing a class of neutrino mass models at the LHC proton-proton collisions with 8 and 14 TeV energies. The existence of lepton flavor violating interactions for a singlet charged scalar, $S^{pm}$, that couples to the leptons could induce many processes such as $pprightarrowell_{alpha}^{pm}ell_{beta}^{mp}+slashed E $. Using the processes with $ell_{alpha}ell_{beta}=ee,emu,mumu$, we found that an inclusive cut on the $M_{T2}$ event variable is vital in our analysis and leads to an effective suppression of the large Standard Model background. Our results show possible detectability of the charged scalars effect, especially at the $sqrt{s}= 14~text{TeV}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا