ترغب بنشر مسار تعليمي؟ اضغط هنا

Off-shell W-pair production - universal versus non-universal corrections

128   0   0.0 ( 0 )
 نشر من قبل Stefan Dittmaier
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Electroweak radiative corrections to e+e- scattering processes typically amount to O(10%) at LEP energies. Their logarithmic increase with energy renders them even more important at future colliders. Although the bulk of these corrections is due to universal process-independent effects, the remaining non-universal corrections are nevertheless phenomenologically important. We describe the structure of the universal corrections to e+e- --> WW --> 4f in detail and discuss the numerical size of universal and non-universal effects using the Monte Carlo generator RACOONWW.



قيم البحث

اقرأ أيضاً

We present results of a computation of NLO QCD corrections to the production of an off-shell top--antitop pair in association with an off-shell $text{W}^+$ boson in proton--proton collisions. As the calculation is based on the full matrix elements fo r the process $text{p}text{p}to {text{e}}^+ u_{text{e}},mu^-bar{ u}_mu,tau^+ u_tau,{text{b}},bar{text{b}}$, all off-shell, spin-correlation, and interference effects are included. The NLO QCD corrections are about $20%$ for the integrated cross-section. Using a dynamical scale, the corrections to most distributions are at the same level, while some distributions show much larger $K$-factors in suppressed regions of phase space. We have performed a second calculation based on a double-pole approximation. While the corresponding results agree with the full calculation within few per cent for integrated cross-sections, the discrepancy can reach $10%$ and more in regions of phase space that are not dominated by top--antitop production. As a consequence, on-shell calculations should only be trusted to this level of accuracy.
129 - S. Actis , M. Beneke , P. Falgari 2008
We calculate the parametrically dominant next-to-next-to-leading order corrections to four-fermion production e^- e^+ -> mu^- nubar_mu u dbar + X at centre-of-mass energies near the W-pair production threshold employing the method of unstable-particl e effective theory. In total the correction is small, leading to a shift of 3 MeV in the W-mass measurement. We also discuss the implementation of realistic cuts and provide a result for the interference of single-Coulomb and soft radiative corrections that can easily be extended to include an arbitrary number of Coulomb photons.
Recently Barbieri, et al. have introduced a formalism to express the deviations of electroweak interactions from their standard model forms in universal theories, i.e. theories in which the corrections due to new physics can be expressed solely by mo difications to the two-point correlation function of electroweak gauge currents of fermions. The parameters introduced by these authors are defined by the properties of the correlation functions at zero momentum, and differ from the quantities calculated by examining the on-shell properties of the electroweak gauge bosons. In this letter we discuss the relationship between the zero-momentum and on-shell parameters. In addition, we present the results of a calculation of these zero-momentum parameters in an arbitrary Higgsless model in which the low-energy rho parameter is one and which can be deconstructed to a linear chain of SU(2) groups adjacent to a chain of U(1) groups. Our results demonstrate the importance of the universal non-oblique corrections which are present and elucidate the relationships among various calculations of electroweak quantities in these models. Our expressions for these zero-momentum parameters depend only on the spectrum of heavy vector-boson masses; therefore, the minimum size of the deviations present in these models is related to the upper bound on the heavy vector-boson masses derived from unitarity. We find that these models are disfavored by precision electroweak data, independent of any assumptions about the background metric or the behavior of the bulk coupling.
The high luminosity that will be accumulated at the LHC will enable precise differential measurements of the hadronic production of a top--antitop-quark pair in association with a $text{W}$ boson. Therefore, an accurate description of this process is needed for realistic final states. In this work we combine for the first time the NLO QCD and electroweak corrections to the full off-shell $text{t}overline{text{t}}{text{W}}^+$ production at the LHC in the three-charged-lepton channel, including all spin correlations, non-resonant effects, and interferences. To this end, we have computed the NLO electroweak radiative corrections to the leading QCD order as well as the NLO QCD corrections to both the QCD and the electroweak leading orders.
A theoretical description of W-pair production in terms of two complementary Monte Carlo event generators YFSWWand KoralW is presented. The way to combine the results of these two programs in order to get precise predictions for WW physics at LEP2 and LC energies is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا