ﻻ يوجد ملخص باللغة العربية
A regularization for effective field theory with two propagating heavy particles is constructed. This regularization preserves the low-energy analytic structure, implements a low-energy power counting for the one-loop diagrams, and preserves symmetries respected by dimensional regularization.
We discuss shallow resonances in the nonrelativistic scattering of two particles using an effective field theory (EFT) that includes an auxiliary field with the quantum numbers of the resonance. We construct the manifestly renormalized scattering amp
I develop an Effective Field Theory (EFT) framework to compute jet substructure observables for heavy ion collision experiments. As an illustration, I consider dijet events that accompany the formation of a weakly coupled Quark Gluon Plasma(QGP) medi
We have studied the interactions between two heavy mesons ($D^{(*)}$-$D^{(*)}$, $bar D^{(*)}$-$bar D^{(*)}$, $B^{(*)}$-$B^{(*)}$, or $bar B^{(*)}$-$bar B^{(*)}$) within heavy meson chiral effective field theory and investigated possible molecular sta
We present an effective field theory of the $Delta$-resonance as an interacting Weinbergs $(3/2,0)oplus (0,3/2)$ field in the multi-spinor formalism. We derive its interactions with nucleons $N$, pions $pi$ and photons $gamma$, and compute the $Delta
We study the unitarized meson-baryon scattering amplitude at leading order in the strangeness $S=-1$ sector using time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of chiral effective field theory. By solving the coupled