ﻻ يوجد ملخص باللغة العربية
In the context of the weakly coupled heterotic string, we propose a new model of mediating supersymmetry breaking. The breakdown of supersymmetry in the hidden sector is transmitted to anti-generation fields via gravitational interactions. Subsequent transmission of the breaking to the MSSM sector occurs via gauge interactions. It is shown that the mass spectra of superparticles are phenomenologically viable.
We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario deflected mirage mediation, which is a generalization of the KKLT-motivated mirage me
We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can b
We revisit the issue of gravitational contributions to soft masses in five-dimensional sequestered models. We point out that, unlike for the case of F-type supersymmetry breaking, for D-type breaking these effects generically give positive soft masse
The requirement of Yukawa coupling unification highly constrains the SUSY parameter space. In several SUSY breaking scenarios it is hard to reconcile Yukawa coupling unification with experimental constraints from B(b->s gamma) and the muon anomalous
In the model of gauge mediation of SUSY breaking in the presence of tree-level mediation, the Froggatt-Nielsen mechanism provides a different hierarchy of sparticle masses. We study the spectra and show the results to be like those in an effective supersymmetric model.