The phase diagram and critical behavior of scalar quantum electrodynamics are investigated using lattice gauge theory techniques. The lattice action fixes the length of the scalar (``Higgs) field and treats the gauge field as non-compact. The phase diagram is two dimensional. No fine tuning or extrapolations are needed to study the theorys critical behovior. Two lines of second order phase transitions are discovered and the scaling laws for each are studied by finite size scaling methods on lattices ranging from $6^4$ through $24^4$. One line corresponds to monopole percolation and the other to a transition between a ``Higgs and a ``Coulomb phase, labelled by divergent specific heats. The lines of transitions cross in the interior of the phase diagram and appear to be unrelated. The monopole percolation transition has critical indices which are compatible with ordinary four dimensional percolation uneffected by interactions. Finite size scaling and histogram methods reveal that the specific heats on the ``Higgs-Coulomb transition line are well-fit by the hypothesis that scalar quantum electrodynamics is logarithmically trivial. The logarithms are measured in both finite size scaling of the specific heat peaks as a function of volume as well as in the coupling constant dependence of the specific heats measured on fixed but large lattices. The theory is seen to be qualitatively similar to $lambdaphi^{4}$. The standard CRAY random number generator RANF proved to be inadequate