ﻻ يوجد ملخص باللغة العربية
On the lattice searching for the gluon condensate is difficult because a large perturbative contribution to the expectation value of the action has to be subtracted before looking for a small contribution from a possible gluon condensate. The perturbative calculation therefore has to be very precise. We use a modified version of stochastic perturbation theory to calculate a perturbative series in a boosted coupling, which converges more rapidly than the series with the usual lattice coupling, reducing the uncertainties in our results. We do not see any condensate of dimension two, as suggested by some earlier lattice studies, but we do find a contribution from a dimension four condensate. The value of this condensate is approximately 0.04(1) GeV^4, but with large uncertainties.
We calculate loop contributions up to four loops to the Landau gauge gluon propagator in numerical stochastic perturbation theory. For different lattice volumes we carefully extrapolate the Euler time step to zero for the Langevin dynamics derived fr
We present higher loop results for the gluon and ghost propagator in Landau gauge on the lattice calculated in numerical stochastic perturbation theory. We make predictions for the perturbative content of those propagators as function of the lattice
In this contribution we present an exploratory study of several novel methods for numerical stochastic perturbation theory. For the investigation we consider observables defined through the gradient flow in the simple {phi}^4 theory.
We present the results of our perturbative calculations of the static quark potential, small Wilson loops, the static quark self energy, and the mean link in Landau gauge. These calculations are done for the one loop Symanzik improved gluon action, and the improved staggered quark action.
This is the second of two papers devoted to the perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Such a computation should enable a comparison with results from lattice simulations in order to reveal the genu