ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice QCD calculation of the proton decay matrix element in the continuum limit

123   0   0.0 ( 0 )
 نشر من قبل Naoto Tsutsui
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a quenched lattice QCD calculation of the alpha and beta parameters of the proton decay matrix element. The simulation is carried out using the Wilson quark action at three values of the lattice spacing in the range aapprox 0.1-0.064 fm to study the scaling violation effect. We find only mild scaling violation when the lattice scale is determined by the nucleon mass. We obtain in the continuum limit, |alpha(NDR,2GeV)|=0.0090(09)(^{+5}_{-19})GeV^3 and |beta(NDR,2GeV)|=0.0096(09)(^{+6}_{-20})GeV^3 with alpha and beta in a relatively opposite sign, where the first error is statistical and the second is due to the uncertainty in the determination of the physical scale.



قيم البحث

اقرأ أيضاً

We present a lattice QCD calculation of the parameters alpha and beta which are necessary in the theoretical estimation of the proton lifetime in grand unified theories (GUTs) using chiral lagrangian approach. The simulation is carried out using the Wilson quark action at three gauge coupling constants in the quenched approximation. We obtain |alpha(2GeV)|=0.0091(08)(^{+10}_{-19})GeV^3 and |beta(2GeV)|=0.0098(08)(^{+10}_{-20})GeV^3 in the continuum limit where the first error is statistical and the second one is due to scale setting.
152 - Y. Aoki , E. Shintani , A. Soni 2013
Hadronic matrix elements of proton decay are essential ingredients to bridge the grand unification theory to low energy observables like proton lifetime. In this paper we non-perturbatively calculate the matrix elements, relevant for the process of a nucleon decaying into a pseudoscalar meson and an anti-lepton through generic baryon number violating four-fermi operators. Lattice QCD with 2+1 flavor dynamical domain-wall fermions with the {it direct} method, which is direct measurement of matrix element from three-point function without chiral perturbation theory, are used for this study to have good control over the lattice discretization error, operator renormalization, and chiral extrapolation. The relevant form factors for possible transition process from an initial proton or neutron to a final pion or kaon induced by all types of three quark operators are obtained through three-point functions of (nucleon)-(three-quark operator)-(meson) with physical kinematics. In this study all the relevant systematic uncertainties of the form factors are taken into account for the first time, and the total error is found to be the range 30%-40% for $pi$ and 20%-40% for $K$ final states.
We compute charm and bottom quark masses in the quenched approximation and in the continuum limit of lattice QCD. We make use of a step scaling method, previously introduced to deal with two scale problems, that allows to take the continuum limit of the lattice data. We determine the RGI quark masses and make the connection to the MSbar scheme. The continuum extrapolation gives us a value m_b^{RGI} = 6.73(16) GeV for the b-quark and m_c^{RGI} = 1.681(36) GeV for the c-quark, corresponding respectively to m_b^{MSbar}(m_b^{MSbar}) = 4.33(10) GeV and m_c^{MSbar}(m_c^{MSbar}) = 1.319(28) GeV. The latter result, in agreement with current estimates, is for us a check of the method. Using our results on the heavy quark masses we compute the mass of the Bc meson, M_{Bc} = 6.46(15) GeV.
We present the first continuum extrapolation of the hyperon octet axial couplings ($g_{Sigma Sigma}$ and $g_{Xi Xi}$) from $N_f=2+1+1$ lattice QCD. These couplings are important parameters in the low-energy effective field theory description of the o ctet baryons and fundamental to the nonleptonic decays of hyperons and to hyperon-hyperon and hyperon-nucleon scattering with application to neutron stars. We use clover lattice fermion action for the valence quarks with sea quarks coming from configurations of $N_f=2+1+1$ highly improved staggered quarks (HISQ) generated by MILC Collaboration. Our work includes the first calculation of $g_{Sigma Sigma}$ and $g_{Xi Xi}$ directly at the physical pion mass on the lattice, and a full account of systematic uncertainty, including excited-state contamination, finite-volume effects and continuum extrapolation, all addressed for the first time. We find the continuum-limit hyperon coupling constants to be $g_{Sigma Sigma}=0.4455(55)_text{stat}(65)_text{sys}$ and $g_{Xi Xi} =-0.2703(47)_text{stat}(13)_text{sys}$, which correspond to low-energy constants of $D = 0.708(10)_text{stat}(6)_text{sys}$ and $F = 0.438(7)_text{stat}(6)_text{sys}$. The corresponding SU(3) symmetry breaking is 9% which is about a factor of 2 smaller than the earlier lattice estimate.
We compute the decay constants for the heavy--light pseudoscalar mesons in the quenched approximation and continuum limit of lattice QCD. Within the Schrodinger Functional framework, we make use of the step scaling method, which has been previously i ntroduced in order to deal with the two scale problem represented by the coexistence of a light and a heavy quark. The continuum extrapolation gives us a value $f_{B_s} = 192(6)(4)$ MeV for the $B_s$ meson decay constant and $f_{D_s} = 240(5)(5)$ MeV for the $D_s$ meson.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا