ﻻ يوجد ملخص باللغة العربية
It has been known for a long time that the large experimental singlet-octet mass gap in the pseudoscalar meson mass spectrum originates from the anomaly of the axial vector current, i.e. from nonperturbative effects and the nontrivial topological structure of the QCD vacuum. In the N_colour -> infinity limit of the theory, this connection elucidates in the famous Witten-Veneziano relation between the eta-mass and the topological susceptibility of the quenched QCD vacuum.While lattice QCD has by now produced impressive high precision results on the flavour nonsinglet hadron spectrum, the determination of the pseudoscalar singlet mesons from direct correlator studies is markedly lagging behind, due to the computational complexity in handling observables that include OZI-rule violating diagrams, like the eta propagator. In this article, we report on some recent progress in dealing with the numerical bottleneck problem.
We determine the masses, the singlet and octet decay constants as well as the anomalous matrix elements of the $eta$ and $eta^prime$ mesons in $N_f=2+1$ QCD@. The results are obtained using twenty-one CLS ensembles of non-perturbatively improved Wils
We present a lattice QCD computation of $eta$ and $eta^prime$ masses and mixing angles, for the first time controlling continuum and quark mass extrapolations. The results for the eta mass 551(8)(6) MeV (first error statistical, second systematic) an
Masses of the eta and eta-prime mesons are estimated in Nf=2+1 lattice QCD with the non-perturbatively O(a) improved Wilson quark action and the Iwasaki RG-improved gluon action, using CP-PACS/JLQCD configurations on a 16^3 x 32 lattice at beta=1.83
We investigate the masses and decay constants of eta and eta mesons using the Wilson twisted mass formulation with N_f=2+1+1 dynamical quark flavours based on gauge configurations of ETMC. We show how to efficiently subtract excited state contributio
We report on a first, comprehensive partially quenched study of the eta-eta problem, based on SESAM configurations on a 16^3x32 lattice at beta=5.6 QCD with two (mass degenerate) active sea quark flavours. By means of the spectral approximation of th