ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for the $Theta^+$ pentaquark in the reactions $gamma p to bar K^0K^+n$ and $gamma p to bar K^0K^0p$

79   0   0.0 ( 0 )
 نشر من قبل Marco Battaglieri
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The exclusive reactions $gamma p to bar K^0 K^+ n$ and $gamma p to bar K^0 K^0 p$ have been studied in the photon energy range 1.6--3.8 GeV, searching for evidence of the exotic baryon $Theta^+(1540)$ in the decays $Theta^+to nK^+$ and $Theta^+to p K^0$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The integrated luminosity was about 70 pb$^{-1}$. The reactions have been isolated by detecting the $K^+$ and proton directly, the neutral kaon via its decay to $K_S to pi^+ pi^-$ and the neutron or neutral kaon via the missing mass technique. The mass and width of known hyperons such as $Sigma^+$, $Sigma^-$ and $Lambda(1116)$ were used as a check of the mass determination accuracy and experimental resolution. Approximately 100,000 $Lambda^*(1520)$s and 150,000 $phi$s were observed in the $bar K^0 K^+ n$ and $bar K^0 K^0 p$ final state respectively. No evidence for the $Theta^+$ pentaquark was found in the $nK^+$ or $pK_S$ invariant mass spectra. Upper limits were set on the production cross section of the reaction $gamma p to Theta^+ bar K^0$ as functions of center-of-mass angle, $nK^+$ and $pK_S$ masses. Combining the results of the two reactions, the 95% C.L. upper limit on the total cross section for a resonance peaked at 1540 MeV was found to be 0.7 nb. Within most of the available theoretical models, this corresponds to an upper limit on the $Theta^+$ width, $Gamma_{Theta^{+}}$, ranging between 0.01 and 7 MeV.



قيم البحث

اقرأ أيضاً

The exclusive reaction $gamma p to bar K^0 K^+ n$ was studied in the photon energy range between 1.6-3.8 GeV searching for evidence of the exotic baryon $Theta^+(1540)to nK^+$. The decay to $nK^+$ requires the assignment of strangeness $S=+1$ to any observed resonance. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility corresponding to an integrated luminosity of 70 $pb^{-1}$. No evidence for the $Theta^+$ pentaquark was found. Upper limits were set on the production cross section as function of center-of-mass angle and $nK^+$ mass. The 95% CL upper limit on the total cross section for a narrow resonance at 1540 MeV was found to be 0.8 nb.
The process $gamma gamma to p bar{p} K^+ K^-$ and its intermediate processes are measured for the first time using a 980~fb$^{-1}$ data sample collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. The production of $p bar {p} K^+ K^-$ and a $Lambda(1520)^0~(bar{Lambda}(1520)^0)$ signal in the $pK^-$~($bar{p} K^+$) invariant mass spectrum are clearly observed. However, no evidence for an exotic baryon near 1540~MeV/$c^2$, denoted as $Theta(1540)^0$~($bar{Theta}~(1540)^0$) or $Theta(1540)^{++}$~($Theta(1540)^{--}$), is seen in the $p K^-$~($bar{p}K^+$) or $pK^+$~($bar{p} K^-$) invariant mass spectra. Cross sections for $gamma gamma to p bar{p} K^+ K^-$, $Lambda(1520)^0 bar{p} K^+ +c.c.$ and the products $sigma(gamma gamma to Theta(1540)^0 bar{p} K^+ +c.c.)BR(Theta(1540)^0 to p K^{-})$ and $sigma(gamma gamma to Theta(1540)^{++} bar{p} K^- +c.c.)BR(Theta(1540)^{++}to p K^{+})$ are measured. We also determine upper limits on the products of the $chi_{c0}$ and $chi_{c2}$ two-photon decay widths and their branching fractions to $p bar{p} K^+ K^-$ at the 90% credibility level.
A search for narrow Theta(1540)^+, a candidate for pentaquark baryon with positive strangeness, has been performed in an exclusive proton-induced reaction p+C(N) to Theta^+ bar{K}^0 + C(N) on carbon nuclei or quasifree nucleons at E_{beam}=70 GeV (sq rt{s} = 11.5 GeV) studying nK^+, pK_S and pK_L decay channels of Theta(1540)^+ in four different final states of the Theta^+ bar{K}^0 system. In order to assess the quality of the identification of the final states with neutron or K_L we reconstructed Lambda(1520)to nK_S and phito K_LK_S decays in the calibration reactions p+C(N)to Lambda(1520)K^+ + C(N) and p+C(N)to pphi + C(N). We found no evidence for narrow pentaquark peak in any of the studied final states and decay channels. Assuming that the production characteristics of the Theta^+ bar{K^0} system are not drastically different from those of the Lambda(1520)K^+ and pphi systems, we established upper limits on the cross section ratios sigma(Theta^+bar{K}^0)/sigma(Lambda(1520)K^+) < 0.02 and sigma(Theta^+bar{K}^0)/sigma(pphi) < 0.15 at 90% CL and a preliminary upper limit for the forward hemisphere cross section sigma(Theta^+bar{K}^0) < 30 nb/nucleon.
83 - M. Sumihama 2005
Differential cross sections and photon beam asymmetries for the gamma p rightarrow K+ Lambda and gamma p rightarrow K+ Sigma0 reactions have been measured in the photon energy range from 1.5 GeV to 2.4 GeV and in the angular range from Theta_{cm} = 0 to 60 of the K+ scattering angle in the center of mass system at the SPring-8/LEPS facility. The photon beam asymmetries for both the reactions have been found to be positive and to increase with the photon energy. The measured differential cross sections agree with the data measured by the CLAS collaboration at cosTheta_{cm}<0.9 within the experimental uncertainties, but the discrepancy with the SAPHIR data for the K+Lambda reaction is large at cosTheta_{cm}>0.9. In the K+Lambda reaction, the resonance-like structure found in the CLAS and SAPHIR data at W=1.96 GeV is confirmed. The differential cross sections at forward angles suggest a strong K-exchange contribution in the t-channel for the K+Lambda reaction, but not for the K+Sigma0 reaction.
For the first time, the reaction gamma d -> Lambda n K+ has been analyzed in order to search for the exotic pentaquark baryon Theta+(1540). The data were taken at Jefferson Lab, using the Hall-B tagged-photon beam of energy between 0.8 and 3.6 GeV an d the CEBAF Large Acceptance Spectrometer (CLAS). No statistically significant structures were observed in the nK+ invariant mass distribution. The upper limit on the gamma d -> Lambda Theta+ integrated cross section has been calculated and found to be between 5 and 25 nb, depending on the production model assumed. The upper limit on the differential cross section is also reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا