ﻻ يوجد ملخص باللغة العربية
Recent works showing that homogeneous and isotropic cosmologies involving scalar fields correspond to geodesics of certain augmented spaces are generalized to the non-minimal coupling case. As the Maupertuis-Jacobi principle in classical mechanics, this result allows us, in principle, to infer some of the dynamical properties of the cosmologies from the geometry of the associated augmented spaces.
We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find
The present work deals with quantum cosmology for non-minimally coupled scalar field in the background of FLRW space--time model. The Wheeler-DeWitt equation is constructed and symmetry analysis is carried out. The Lie point symmetries are related to
In this paper we discuss local averages of the energy density for the non-minimally coupled scalar quantum field, extending a previous investigation of the classical field. By an explicit example, we show that such averages are unbounded from below o
In this paper we consider a third quantized cosmological model with varying speed of light $c$ and varying gravitational constant $G$ both represented by non-minimally coupled scalar fields. The third quantization of such a model leads to a scenario
Geodesic observers in cosmology are revisited. The coordinates based on freely falling observers introduced by Gautreau in de Sitter and Einstein-de Sitter spaces (and, previously, by Gautreau and Hoffmann in Schwarzschild space) are extended to gene