ﻻ يوجد ملخص باللغة العربية
The abstract boundary construction of Scott and Szekeres is a general and flexible way to define singularities in General Relativity. The abstract boundary construction also proves of great utility when applied to questions about more general boundary features of space-time. Within this construction an essential singularity is a non-regular boundary point which is accessible by a curve of interest (e.g. a geodesic) within finite (affine) parameter distance and is not removable. Ashley and Scott proved the first theorem linking abstract boundary essential singularities with the notion of causal geodesic incompleteness for strongly causal, maximally extended space-times. The relationship between this result and the classical singularity theorems of Penrose and Hawking has enabled us to obtain abstract boundary singularity theorems. This paper describes essential singularity results for maximally extended space-times and presents our recent efforts to establish a relationship between the strong curvature singularities of Tipler and Krolak and abstract boundary essential singularities.
The Abstract Boundary singularity theorem was first proven by Ashley and Scott. It links the existence of incomplete causal geodesics in strongly causal, maximally extended spacetimes to the existence of Abstract Boundary essential singularities, i.e
Singularities play an important role in General Relativity and have been shown to be an inherent feature of most physically reasonable space-times. Despite this, there are many aspects of singularities that are not qualitatively or quantitatively und
The abstract boundary construction of Scott and Szekeres provides a `boundary for any n-dimensional, paracompact, connected, Hausdorff, smooth manifold. Singularities may then be defined as objects within this boundary. In a previous paper by the aut
We derive a generalized Gross-Pitaevski (GP) equation immersed on a electromagnetic and a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the GP equation where the gravitation
Boundary problem for Tolman-Bondi model is formulated. One-to-one correspondence between singularities hypersurfaces and initial conditions of the Tolman-Bondi model is constructed.