ترغب بنشر مسار تعليمي؟ اضغط هنا

Solutions of all one-dimensional wave equations with time independent potential and separable variables

53   0   0.0 ( 0 )
 نشر من قبل Alessandro D. A. M. Spallicci
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exact solutions, in terms of special functions, of all wave equations $% u_{xx} - u_{tt} = V(x) u(t,x)$, characterised by eight inequivalent time independent potentials and by variable separation, have been found. The real valueness of the solutions from computer algebra programs is not always manifest and in this work we provide ready to use solutions. We discussed especially the potential $cosh^{-2}x (m_1 + m_2 sinh x)$. Such potential approximates the Schwarzschild black hole potential for even parity.



قيم البحث

اقرأ أيضاً

New exact analytical bound-state solutions of the radial Dirac equation in 3+1 dimensions for two sets of couplings and radial potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generali zed Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of equations that can be transformed into polynomial equations. Several analytical results found in the literature, including the Dirac oscillator, are obtained as particular cases of this unified approach.
84 - Stefan Waldmann 2012
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting. As application, the classical Poisson algebra of polynomial functions on the initial values and the dynamical Poisson algebra coming from the wave equation are related. The text contains an introduction to the theory of distributions on manifolds as well as detailed proofs.
182 - Lili He , Hans Lindblad 2021
In this work we give a complete picture of how to in a direct simple way define the mass at null infinity in harmonic coordinates in three different ways that we show satisfy the Bondi mass loss law. The first and second way involve only the limit of metric (Trautman mass) respectively the null second fundamental forms along asymptotically characteristic surfaces (asymptotic Hawking mass) that only depend on the ADM mass. The last in an original way involves construction of special characteristic coordinates at null infinity (Bondi mass). The results here rely on asymptotics of the metric derived in [24].
We present a general solution of the coupled Einstein-Maxwell field equations (without the source charges and currents) in three spacetime dimensions. We also admit any value of the cosmological constant. The whole family of such $Lambda$-electrovacu um local solutions splits into two distinct subclasses, namely the non-expanding Kundt class and the expanding Robinson-Trautman class. While the Kundt class only admits electromagnetic fields which are aligned along the geometrically privileged null congruence, the Robinson-Trautman class admits both aligned and also more complex non-aligned Maxwell fields. We derive all the metric and Maxwell field components, together with explicit constraints imposed by the field equations. We also identify the most important special spacetimes of this type, namely the coupled gravitational-electromagnetic waves and charged black holes.
We apply the Painleve Test for the Benney and the Benney-Gjevik equations which describe waves in falling liquids. We prove that these two nonlinear 1+1 evolution equations pass the singularity test for the travelling-wave solutions. The algebraic so lutions in terms of Laurent expansions are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا