ﻻ يوجد ملخص باللغة العربية
The renewed serious interest to possible practical applications of gravitational waves is encouraging. Building on previous work, I am arguing that the strong variable electromagnetic fields are appropriate systems for the generation and detection of high-frequency gravitational waves (HFGW). The advantages of electromagnetic systems are clearly seen in the proposed complete laboratory experiment, where one has to ensure the efficiency of, both, the process of generation and the process of detection of HFGW. Within the family of electromagnetic systems, one still has a great variety of possible geometrical configurations, classical and quantum states of the electromagnetic field, detection strategies, etc. According to evaluations performed 30 years ago, the gap between the HFGW laboratory signal and its level of detectability is at least 4 orders of magnitude. Hopefully, new technologies of today can remove this gap and can make the laboratory experiment feasible. The laboratory experiment is bound to be expensive, but one should remember that a part of the cost is likely to be reimbursed from the Nobel prize money ! Electromagnetic systems seem also appropriate for the detection of high-frequency end of the spectrum of relic gravitational waves. Although the current effort to observe the stochastic background of relic gravitational waves is focused on the opposite, very low-frequency, end of the spectrum, it would be extremely valuable for fundamental science to detect, or put sensible upper limits on, the high-frequency relic gravitational waves. I will briefly discuss the origin of relic gravitational waves, the expected level of their high-frequency signal, and the existing estimates of its detectability.
The behaviour of a test electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einsteins general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like i
The existing high technology laser-beam detectors of gravitational waves may find very useful applications in an unexpected area - geophysics. To make possible the detection of weak gravitational waves in the region of high frequencies of astrophysic
We demonstrate how plane fronted waves with colliding wave fronts are the asymptotic limit of spherical electromagnetic and gravitational waves. In the case of the electromagnetic waves we utilize Batemans representation of radiative solutions of Max
The direct detection of gravitational waves crowns decades of efforts in the modelling of sources and of increasing detectors sensitivity. With future third-generation Earth-based detectors or space-based observatories, gravitational-wave astronomy w
We rigorously analyze the frequency response functions and antenna sensitivity patterns of three types of interferometric detectors to scalar mode of gravitational waves which is predicted to exist in the scalar-tensor theory of gravity. By a straigh