ﻻ يوجد ملخص باللغة العربية
The importance of transformations and normal forms in logic programming, and generally in computer science, is well documented. This paper investigates transformations and normal forms in the context of Defeasible Logic, a simple but efficient formalism for nonmonotonic reasoning based on rules and priorities. The transformations described in this paper have two main benefits: on one hand they can be used as a theoretical tool that leads to a deeper understanding of the formalism, and on the other hand they have been used in the development of an efficient implementation of defeasible logic.
Defeasible logics provide several linguistic features to support the expression of defeasible knowledge. There is also a wide variety of such logics, expressing different intuitions about defeasible reasoning. However, the logics can only combine in
Linear Logic and Defeasible Logic have been adopted to formalise different features relevant to agents: consumption of resources, and reasoning with exceptions. We propose a framework to combine sub-structural features, corresponding to the consumpti
In this paper we introduce a computational-level model of theory of mind (ToM) based on dynamic epistemic logic (DEL), and we analyze its computational complexity. The model is a special case of DEL model checking. We provide a parameterized complexi
In solving a query, the SLD proof procedure for definite programs sometimes searches an infinite space for a non existing solution. For example, querying a planner for an unreachable goal state. Such programs motivate the development of methods to pr
Algebraic characterization of logic programs has received increasing attention in recent years. Researchers attempt to exploit connections between linear algebraic computation and symbolic computation in order to perform logical inference in large sc