ترغب بنشر مسار تعليمي؟ اضغط هنا

Representation results for defeasible logic

101   0   0.0 ( 0 )
 نشر من قبل Guido Governatori
 تاريخ النشر 2000
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The importance of transformations and normal forms in logic programming, and generally in computer science, is well documented. This paper investigates transformations and normal forms in the context of Defeasible Logic, a simple but efficient formalism for nonmonotonic reasoning based on rules and priorities. The transformations described in this paper have two main benefits: on one hand they can be used as a theoretical tool that leads to a deeper understanding of the formalism, and on the other hand they have been used in the development of an efficient implementation of defeasible logic.



قيم البحث

اقرأ أيضاً

Defeasible logics provide several linguistic features to support the expression of defeasible knowledge. There is also a wide variety of such logics, expressing different intuitions about defeasible reasoning. However, the logics can only combine in trivial ways. This limits their usefulness in contexts where different intuitions are at play in different aspects of a problem. In particular, in some legal settings, different actors have different burdens of proof, which might be expressed as reasoning in different defeasible logics. In this paper, we introduce annotated defeasible logic as a flexible formalism permitting multiple forms of defeasibility, and establish some properties of the formalism. This paper is under consideration for acceptance in Theory and Practice of Logic Programming.
Linear Logic and Defeasible Logic have been adopted to formalise different features relevant to agents: consumption of resources, and reasoning with exceptions. We propose a framework to combine sub-structural features, corresponding to the consumpti on of resources, with defeasibility aspects, and we discuss the design choices for the framework.
In this paper we introduce a computational-level model of theory of mind (ToM) based on dynamic epistemic logic (DEL), and we analyze its computational complexity. The model is a special case of DEL model checking. We provide a parameterized complexi ty analysis, considering several aspects of DEL (e.g., number of agents, size of preconditions, etc.) as parameters. We show that model checking for DEL is PSPACE-hard, also when restricted to single-pointed models and S5 relations, thereby solving an open problem in the literature. Our approach is aimed at formalizing current intractability claims in the cognitive science literature regarding computational models of ToM.
In solving a query, the SLD proof procedure for definite programs sometimes searches an infinite space for a non existing solution. For example, querying a planner for an unreachable goal state. Such programs motivate the development of methods to pr ove the absence of a solution. Considering the definite program and the query ``<- Q as clauses of a first order theory, one can apply model generators which search for a finite interpretation in which the program clauses as well as the clause ``false <- Q are true. This paper develops a new approach which exploits the fact that all clauses are definite. It is based on a goal directed abductive search in the space of finite pre-interpretations for a pre-interpretation such that ``Q is false in the least model of the program based on it. Several methods for efficiently searching the space of pre-interpretations are presented. Experimental results confirm that our approach find solutions with less search than with the use of a first order model generator.
Algebraic characterization of logic programs has received increasing attention in recent years. Researchers attempt to exploit connections between linear algebraic computation and symbolic computation in order to perform logical inference in large sc ale knowledge bases. This paper proposes further improvement by using sparse matrices to embed logic programs in vector spaces. We show its great power of computation in reaching the fixpoint of the immediate consequence operator from the initial vector. In particular, performance for computing the least models of definite programs is dramatically improved in this way. We also apply the method to the computation of stable models of normal programs, in which the guesses are associated with initial matrices, and verify its effect when there are small numbers of negation. These results show good enhancement in terms of performance for computing consequences of programs and depict the potential power of tensorized logic programs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا