ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical transport properties of ultrathin disordered films

63   0   0.0 ( 0 )
 نشر من قبل G. Sambandamurthy
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an experimental study of quench condensed ($2Kle T le 15K$) disordered ultrathin films of {rm Bi} where localisation effects and superconductivity compete. Experiments are done with different substrates and/or different underlayers. Quasi-free standing films of {rm Bi}, prepared by quenching {rm Bi} vapours onto solid {rm Xe}, are also studied. The results show a dependence of the transport properties both on the dielectric constant of the substrate/underlayer as well as the temperature of quench condensation. RHEED studies indicate that quantum size effects are important in these systems. In this paper, we try to correlate the structure of the films to the transport properties obtained.



قيم البحث

اقرأ أيضاً

The effect of an electric field on the conductance of ultrathin films of metals deposited on substrates coated with a thin layer of amorphous Ge was investigated. A contribution to the conductance modulation symmetric with respect to the polarity of the applied electric field was found in regimes in which there was no sign of glassy behavior. For films with thicknesses that put them on the insulating side of the superconductor-insulator transition, the conductance increased with electric field, whereas for films that were becoming superconducting it decreased. Application of magnetic fields to the latter, which reduce the transition temperature and ultimately quench superconductivity, changed the sign of the reponse of the conductance to electric field back to that found for insulators. We propose that this symmetric response to capacitive charging is a consequence of changes in the conductance of the a-Ge layer, and is not a fundamental property of the physics of the superconductor-insulator transition as previously suggested.
Nonlinear I-V characteristics have been observed in insulating quench-condensed films which are locally superconducting. We suggest an interpretation in terms of the enhancement of conduction by the depinning of a Cooper pair charge density wave, Coo per pair crystal, or Cooper pair glass that may characterize the insulating regime of locally superconducting films. We propose that this is a more likely description than the Coulomb blockade or charge-anticharge unbinding phenomena.
In this communication, we numerically studied disordered quantum transport in a quantum anomalous Hall insulator-superconductor junction based on the effective edge model approach. In particular, we focus on the parameter regime with the free mean pa th due to elastic scattering much smaller than the sample size and discuss disordered transport behaviors in the presence of different numbers of chiral edge modes, as well as non-chiral metallic modes. Our numerical results demonstrate that the presence of multiple chiral edge modes or non-chiral metallic modes will lead to a strong Andreev conversion, giving rise to half-electron half-hole transmission through the junction structure, in sharp contrast to the suppression of Andreev conversion in the single chiral edge mode case. Our results suggest the importance of additional transport modes in the quantum anomalous Hall insulator-superconductor junction and will guide the future transport measurements.
Suppression of the critical temperature in homogeneously disordered superconducting films is a consequence of the disorder-induced enhancement of Coulomb repulsion. We demonstrate that for the majority of thin films studied now this effect cannot be completely explained in the assumption of two-dimensional diffusive nature of electrons motion. The main contribution to the $T_c$ suppression arises from the correction to the electron-electron interaction constant coming from small scales of the order of the Fermi wavelength that leads to the critical temperature shift $delta T_c/T_{c0} sim - 1/k_Fl$, where $k_F$ is the Fermi momentum and $l$ is the mean free path. Thus almost for all superconducting films that follow the fermionic scenario of $T_c$ suppression with decreasing the film thickness, this effect is caused by the proximity to the three-dimensional Anderson localization threshold and is controlled by the parameter $k_F l$ rather than the sheet resistance of the film.
Many disordered superconducting films exhibit smeared tunneling spectra with evident in-gap states. We demonstrated that the tunneling density of states in ultrathin MoC films is gapless and can be described by the Dynes version of the BCS density of states with a strong broadening parameter Gamma accounting for the suppression of coherence peaks and increased in-gap states. The thinner the film, the lower the Tc and the superconducting energy gap Delta and the larger the Gamma. MoC films of 3 nm thickness deposited simultaneously on silicon and sapphire substrates reveal very similar scalar disorder, evidenced by the equal sheet resistance, but exhibit different superconducting characteristics of Tc, Delta and Gamma, suggesting that pair breaking responsible for the dissipation channel and the suppression of superconductivity originates on the film-substrate interface. It indicates that sapphire is a stronger pair breaker. Interface pair breaking can be operative in other cases as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا