ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dynamical Cluster Approximation: Non-Local Dynamics of Correlated Electron Systems

129   0   0.0 ( 0 )
 نشر من قبل Matthias H. Hettler
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. H. Hettler




اسأل ChatGPT حول البحث

We recently introduced the dynamical cluster approximation(DCA), a new technique that includes short-ranged dynamical correlations in addition to the local dynamics of the dynamical mean field approximation while preserving causality. The technique is based on an iterative self-consistency scheme on a finite size periodic cluster. The dynamical mean field approximation (exact result) is obtained by taking the cluster to a single site (the thermodynamic limit). Here, we provide details of our method, explicitly show that it is causal, systematic, $Phi$-derivable, and that it becomes conserving as the cluster size increases. We demonstrate the DCA by applying it to a Quantum Monte Carlo and Exact Enumeration study of the two-dimensional Falicov-Kimball model. The resulting spectral functions preserve causality, and the spectra and the CDW transition temperature converge quickly and systematically to the thermodynamic limit as the cluster size increases.



قيم البحث

اقرأ أيضاً

136 - XiaoYu Deng , Xi Dai , Zhong Fang 2007
Combining the density functional theory (DFT) and the Gutzwiller variational approach, a LDA+Gutzwiller method is developed to treat the correlated electron systems from {it ab-initio}. All variational parameters are self-consistently determined from total energy minimization. The method is computationally cheaper, yet the quasi-particle spectrum is well described through kinetic energy renormalization. It can be applied equally to the systems from weakly correlated metals to strongly correlated insulators. The calculated results for SrVO$_3$, Fe, Ni and NiO, show dramatic improvement over LDA and LDA+U.
We propose a cellular version of dynamical-mean field theory which gives a natural generalization of its original single-site construction and is formulated in different sets of variables. We show how non-orthogonality of the tight-binding basis sets enters the problem and prove that the resulting equations lead to manifestly causal self energies.
157 - S. Y. Savrasov , G. Kotliar 2002
We introduce a new linear response method to study the lattice dynamics of materials with strong correlations. It is based on a combination of dynamical mean field theory of strongly correlated electrons and the local density functional theory of ele ctronic structure of solids. We apply the method to study the phonon dispersions of a prototype Mott insulator NiO. Our results show overall much better agreement with experiment than the corresponding local density predictions.
While second-order phase transitions always cause strong non-local fluctuations, their effect on spectral properties crucially depends on the dimensionality. For the important case of three dimensions, we show that the electron self-energy is well se parable into a local dynamical part and static non-local contributions. In particular, our non-perturbative many-body calculations for the 3D Hubbard model at different fillings demonstrate that the quasi-particle weight remains essentially momentum-independent, also in the presence of overall large non-local corrections to the self-energy. Relying on this insight we propose a space-time-separated scheme for many-body perturbation theory that is up to ten times more efficient than current implementations. Besides these far-reaching implications for state-of-the-art electronic structure schemes, our analysis will also provide guidance to the quest of going beyond them.
Weyl semimetals (WSMs) are characterized by topologically stable pairs of nodal points in the band structure, that typically originate from splitting a degenerate Dirac point by breaking symmetries such as time reversal or inversion symmetry. Within the independent electron approximation, the transition between an insulating state and a WSM requires the local creation or annihilation of one or several pairs of Weyl nodes in reciprocal space. Here, we show that strong electron-electron interactions may qualitatively change this scenario. In particular, we reveal that the transition to a Weyl semi-metallic phase can become discontinuous, and, quite remarkably, pairs of Weyl nodes with a finite distance in momentum space suddenly appear or disappear in the spectral function. We associate this behavior to the buildup of strong many-body correlations in the topologically non-trivial regions, manifesting in dynamical fluctuations in the orbital channel. We also highlight the impact of electronic correlations on the Fermi arcs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا