We analyze the transport properties of a neutral tracer in a carrier fluid flowing through percolation-like porous media with spatial correlations. We model convection in the mass transport process using the velocity field obtained by the numerical solution of the Navier-Stokes and continuity equations in the pore space. We show that the resulting statistical properties of the tracer can be approximated by a Levy walk model, which is a consequence of the broad distribution of velocities plus the existence of spatial correlations in the porous medium.